BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 33088994)

  • 1. Applications of 3D Bioprinted-Induced Pluripotent Stem Cells in Healthcare.
    Soman SS; Vijayavenkataraman S
    Int J Bioprint; 2020; 6(4):280. PubMed ID: 33088994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Bioprinting of Induced Pluripotent Stem Cells and Disease Modeling.
    Liang S; Su Y; Yao R
    Handb Exp Pharmacol; 2023; 281():29-56. PubMed ID: 36882603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Application of 3D Bioprinted Scaffolds Supporting Induced Pluripotent Stem Cells.
    Lu D; Liu Y; Li W; Ma H; Li T; Ma X; Mao Y; Liang Q; Ma Z; Wang J
    Biomed Res Int; 2021; 2021():4910816. PubMed ID: 34552987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unleashing the Power of Undifferentiated Induced Pluripotent Stem Cell Bioprinting: Current Progress and Future Prospects.
    Kim B; Kim J; Lee S
    Int J Stem Cells; 2024 Feb; 17(1):38-50. PubMed ID: 38164608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of 3D Bioprinting Technology in Induced Pluripotent Stem Cells-Based Tissue Engineering.
    Shukla AK; Gao G; Kim BS
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic microorganisms for the oxygenation of advanced 3D bioprinted tissues.
    Ortega JS; Corrales-Orovio R; Ralph P; Egaña JT; Gentile C
    Acta Biomater; 2023 Jul; 165():180-196. PubMed ID: 35562006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Bioprinted Human Cortical Neural Constructs Derived from Induced Pluripotent Stem Cells.
    Salaris F; Colosi C; Brighi C; Soloperto A; Turris V; Benedetti MC; Ghirga S; Rosito M; Di Angelantonio S; Rosa A
    J Clin Med; 2019 Oct; 8(10):. PubMed ID: 31581732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of Bioprinting in Regenerative Medicine: Naturally Derived Bioinks and Stem Cells.
    Moghaddam AS; Khonakdar HA; Arjmand M; Jafari SH; Bagher Z; Moghaddam ZS; Chimerad M; Sisakht MM; Shojaei S
    ACS Appl Bio Mater; 2021 May; 4(5):4049-4070. PubMed ID: 35006822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks.
    Hirano M; Huang Y; Vela Jarquin D; De la Garza Hernández RL; Jodat YA; Luna Cerón E; García-Rivera LE; Shin SR
    Biofabrication; 2021 Jun; 13(3):. PubMed ID: 33962404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developments and Opportunities for 3D Bioprinted Organoids.
    Ren Y; Yang X; Ma Z; Sun X; Zhang Y; Li W; Yang H; Qiang L; Yang Z; Liu Y; Deng C; Zhou L; Wang T; Lin J; Li T; Wu T; Wang J
    Int J Bioprint; 2021; 7(3):364. PubMed ID: 34286150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation.
    Palomo AB; Lucas M; Dilley RJ; McLenachan S; Chen FK; Requena J; Sal MF; Lucas A; Alvarez I; Jaraquemada D; Edel MJ
    J Clin Med; 2014 Apr; 3(2):373-87. PubMed ID: 26237380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iPSC Bioprinting: Where are We at?
    Romanazzo S; Nemec S; Roohani I
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31374871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration.
    Khanna A; Ayan B; Undieh AA; Yang YP; Huang NF
    J Mol Cell Cardiol; 2022 Aug; 169():13-27. PubMed ID: 35569213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127.
    Shamma RN; Sayed RH; Madry H; El Sayed NS; Cucchiarini M
    Tissue Eng Part B Rev; 2022 Apr; 28(2):451-463. PubMed ID: 33820451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinted functional and contractile cardiac tissue constructs.
    Wang Z; Lee SJ; Cheng HJ; Yoo JJ; Atala A
    Acta Biomater; 2018 Apr; 70():48-56. PubMed ID: 29452273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities.
    Salaris F; Rosa A
    Brain Res; 2019 Nov; 1723():146393. PubMed ID: 31425681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design.
    Puistola P; Miettinen S; Skottman H; Mörö A
    Mater Today Bio; 2024 Feb; 24():100924. PubMed ID: 38226015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iPSC-derived cells for whole liver bioengineering.
    Telles-Silva KA; Pacheco L; Chianca F; Komatsu S; Chiovatto C; Zatz M; Goulart E
    Front Bioeng Biotechnol; 2024; 12():1338762. PubMed ID: 38384436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.