BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33089424)

  • 1. Effects of Novel Tacrine Derivatives on Mitochondrial Energy Metabolism and Monoamine Oxidase Activity-In Vitro Study.
    Hroudová J; Nováková T; Korábečný J; Maliňák D; Górecki L; Fišar Z
    Mol Neurobiol; 2021 Mar; 58(3):1102-1113. PubMed ID: 33089424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Effects of Cognitives and Nootropics on Mitochondrial Respiration and Monoamine Oxidase Activity.
    Singh N; Hroudová J; Fišar Z
    Mol Neurobiol; 2017 Oct; 54(8):5894-5904. PubMed ID: 27660276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine-Homoisoflavonoid hybrids.
    Sun Y; Chen J; Chen X; Huang L; Li X
    Bioorg Med Chem; 2013 Dec; 21(23):7406-17. PubMed ID: 24128814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Little in vitro effect of remdesivir on mitochondrial respiration and monoamine oxidase activity in isolated mitochondria.
    Fišar Z; Ľupták M; Hroudová J
    Toxicol Lett; 2021 Oct; 350():143-151. PubMed ID: 34311047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Novel Antipsychotics on Energy Metabolism - In Vitro Study in Pig Brain Mitochondria.
    Ľupták M; Fišar Z; Hroudová J
    Mol Neurobiol; 2021 Nov; 58(11):5548-5563. PubMed ID: 34365585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of amiridin and tacrine, drugs effective in Alzheimer's disease, on the activity of monoamine oxidase A and B].
    Burov IuV; Baĭmanov TD; Tat'ianenko LV; Sokolova NM; Tereshchenkova IM
    Biull Eksp Biol Med; 1992 Feb; 113(2):149-50. PubMed ID: 1611059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrahydroaminoacridine inhibits human and rat brain monoamine oxidase.
    Adem A; Jossan SS; Oreland L
    Neurosci Lett; 1989 Dec; 107(1-3):313-7. PubMed ID: 2616041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease.
    Xie SS; Wang X; Jiang N; Yu W; Wang KD; Lan JS; Li ZR; Kong LY
    Eur J Med Chem; 2015 May; 95():153-65. PubMed ID: 25812965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Synthesis and in vitro Evaluation of Indolotacrine Analogues as Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease.
    Benek O; Soukup O; Pasdiorova M; Hroch L; Sepsova V; Jost P; Hrabinova M; Jun D; Kuca K; Zala D; Ramsay RR; Marco-Contelles J; Musilek K
    ChemMedChem; 2016 Jun; 11(12):1264-9. PubMed ID: 26427608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of monoamine oxidase-a increases respiration in isolated mouse cortical mitochondria.
    Kalimon OJ; Vekaria HJ; Gerhardt GA; Sullivan PG
    Exp Neurol; 2023 May; 363():114356. PubMed ID: 36841465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers.
    Fisar Z; Hroudová J; Raboch J
    Neuro Endocrinol Lett; 2010; 31(5):645-56. PubMed ID: 21200377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of novel 17β-hydroxysteroid dehydrogenase type 10 inhibitors on mitochondrial respiration.
    Fišar Z; Musílek K; Benek O; Hroch L; Vinklářová L; Schmidt M; Hroudová J; Raboch J
    Toxicol Lett; 2021 Mar; 339():12-19. PubMed ID: 33359020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel series of tacrine-selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer's disease.
    Lu C; Zhou Q; Yan J; Du Z; Huang L; Li X
    Eur J Med Chem; 2013 Apr; 62():745-53. PubMed ID: 23454517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in drug development for Alzheimer's disease: An overview in relation to mitochondrial energy metabolism.
    Hroudová J; Singh N; Fišar Z; Ghosh KK
    Eur J Med Chem; 2016 Oct; 121():774-784. PubMed ID: 27094132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, and pharmacological evaluation of 2-amino-5-nitrothiazole derived semicarbazones as dual inhibitors of monoamine oxidase and cholinesterase: effect of the size of aryl binding site.
    Tripathi RKP; M Sasi V; Gupta SK; Krishnamurthy S; Ayyannan SR
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):37-57. PubMed ID: 29098902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of monoamine oxidase (MAO) to the binding of tertiary basic drugs in lung mitochondria.
    Yoshida H; Kamiya A; Okumura K; Hori R
    Pharm Res; 1989 Oct; 6(10):877-82. PubMed ID: 2608630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis, and evaluation of 3,7-substituted coumarin derivatives as multifunctional Alzheimer's disease agents.
    Mzezewa SC; Omoruyi SI; Zondagh LS; Malan SF; Ekpo OE; Joubert J
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):1607-1621. PubMed ID: 34281458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosensitizing effects of Photofrin II on the site-selected mitochondrial enzymes adenylate kinase and monoamine oxidase.
    Murant RS; Gibson SL; Hilf R
    Cancer Res; 1987 Aug; 47(16):4323-8. PubMed ID: 3038310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow.
    Cohen G; Farooqui R; Kesler N
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4890-4. PubMed ID: 9144160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tacrine and its analogues impair mitochondrial function and bioenergetics: a lipidomic analysis in rat brain.
    Melo T; Videira RA; André S; Maciel E; Francisco CS; Oliveira-Campos AM; Rodrigues LM; Domingues MR; Peixoto F; Manuel Oliveira M
    J Neurochem; 2012 Mar; 120(6):998-1013. PubMed ID: 22192081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.