These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33089632)

  • 1. Biomimetic Recognition and Optical Sensing of Carboxylic Acids in Water by Using a Buried Salt Bridge and the Hydrophobic Effect.
    Huang X; Wang X; Quan M; Yao H; Ke H; Jiang W
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1929-1935. PubMed ID: 33089632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature.
    Yang LP; Wang X; Yao H; Jiang W
    Acc Chem Res; 2020 Jan; 53(1):198-208. PubMed ID: 31858790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-stranded supramolecular assembly through salt bridge formation between rigid and flexible amidine and carboxylic acid strands.
    Iida H; Shimoyama M; Furusho Y; Yashima E
    J Org Chem; 2010 Jan; 75(2):417-23. PubMed ID: 20025216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantiomeric Water-Soluble Octopus[3]arenes for Highly Enantioselective Recognition of Chiral Ammonium Salts in Water.
    Han XN; Li PF; Han Y; Chen CF
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202202527. PubMed ID: 35266278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Green and Wide-Scope Approach for Chiroptical Sensing of Organic Molecules through Biomimetic Recognition in Water.
    Wang LL; Quan M; Yang TL; Chen Z; Jiang W
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23817-23824. PubMed ID: 32902085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A synthetic mimic of protein inner space: buried polar interactions in a deep water-soluble host.
    Butterfield SM; Rebek J
    J Am Chem Soc; 2006 Dec; 128(48):15366-7. PubMed ID: 17131990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of L-proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids.
    Naziroglu HN; Durmaz M; Bozkurt S; Sirit A
    Chirality; 2011 Jul; 23(6):463-71. PubMed ID: 21472784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing of enantiomeric excess in chiral carboxylic acids.
    Akdeniz A; Mosca L; Minami T; Anzenbacher P
    Chem Commun (Camb); 2015 Apr; 51(26):5770-3. PubMed ID: 25720499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hetero-stranded double helix composed of m-diethynylbenzene-based complementary molecular strands stabilized by amidinium-carboxylate salt bridges.
    Wu ZQ; Furusho Y; Yamada H; Yashima E
    Chem Commun (Camb); 2010 Dec; 46(47):8962-4. PubMed ID: 20976318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic interactions. Subnanoscale hydrophobic modulation of salt bridges in aqueous media.
    Chen S; Itoh Y; Masuda T; Shimizu S; Zhao J; Ma J; Nakamura S; Okuro K; Noguchi H; Uosaki K; Aida T
    Science; 2015 May; 348(6234):555-9. PubMed ID: 25931555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-induced chirality control in the enantioseparation of 1-phenylethylamine via diastereomeric salt formation.
    Kodama K; Kimura Y; Shitara H; Yasutake M; Sakurai R; Hirose T
    Chirality; 2011 Apr; 23(4):326-32. PubMed ID: 21384437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiroptical spectroscopy of natural products: avoiding the aggregation effects of chiral carboxylic acids.
    Polavarapu PL; Donahue EA; Hammer KC; Raghavan V; Shanmugam G; Ibnusaud I; Nair DS; Gopinath C; Habel D
    J Nat Prod; 2012 Aug; 75(8):1441-50. PubMed ID: 22877358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a synthetic receptor for dimethyllysine using a biphenyl-2,6-dicarboxylic acid scaffold: insights into selective recognition of hydrophilic guests in water.
    Gober IN; Waters ML
    Org Biomol Chem; 2017 Sep; 15(37):7789-7795. PubMed ID: 28876351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of helically twisted [1 + 1]macrocycles assisted by amidinium-carboxylate salt bridges and control of their chiroptical properties.
    Nakatani Y; Furusho Y; Yashima E
    Org Biomol Chem; 2013 Feb; 11(10):1614-23. PubMed ID: 23223850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Recognition of Quinones in Water by an Endo-Functionalized Cavity with Anthracene Sidewalls.
    Zhou H; Pang XY; Wang X; Yao H; Yang LP; Jiang W
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25981-25987. PubMed ID: 34569134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Racemic atropisomeric N,N-chelate ligands for recognizing chiral carboxylates via Zn(II) coordination: structure, fluorescence, and circular dichroism.
    McCormick TM; Wang S
    Inorg Chem; 2008 Nov; 47(21):10017-24. PubMed ID: 18831581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1,2-diamine-based bisbinaphthyl molecules.
    Li ZB; Lin J; Sabat M; Hyacinth M; Pu L
    J Org Chem; 2007 Jun; 72(13):4905-16. PubMed ID: 17530897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt bridge stability in monomeric proteins.
    Kumar S; Nussinov R
    J Mol Biol; 1999 Nov; 293(5):1241-55. PubMed ID: 10547298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescent chiral chemosensor for the recognition of the two enantiomers of chiral carboxylates.
    Li Y; Tamilavan V; Hyun MH
    Chirality; 2012 May; 24(5):406-11. PubMed ID: 22514035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sodium salt of diethyl 1H-pyrazole-3,5-dicarboxylate as an efficient amphiphilic receptor for dopamine and amphetamines. crystal structure and solution studies.
    Reviriego F; Rodríguez-Franco MI; Navarro P; García-España E; Liu-Gonzalez M; Verdejo B; Domènech A
    J Am Chem Soc; 2006 Dec; 128(51):16458-9. PubMed ID: 17177368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.