BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33089990)

  • 1. Use of Target-Displaying Magnetized Yeast in Screening mRNA-Display Peptide Libraries to Identify Ligands.
    Bacon K; Bowen J; Reese H; Rao BM; Menegatti S
    ACS Comb Sci; 2020 Dec; 22(12):738-744. PubMed ID: 33089990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening Yeast Display Libraries against Magnetized Yeast Cell Targets Enables Efficient Isolation of Membrane Protein Binders.
    Bacon K; Burroughs M; Blain A; Menegatti S; Rao BM
    ACS Comb Sci; 2019 Dec; 21(12):817-832. PubMed ID: 31693340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of Yeast Display Libraries of Enzymatically Treated Peptides to Discover Macrocyclic Peptide Ligands.
    Bowen J; Schneible J; Bacon K; Labar C; Menegatti S; Rao BM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of Single-Domain Antibodies to Transmembrane Proteins Using Magnetized Yeast Cell Targets.
    Bacon K; Menegatti S; Rao BM
    Methods Mol Biol; 2022; 2446():95-119. PubMed ID: 35157270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of Chemically Cyclized Peptide Binders Using Yeast Surface Display.
    Bacon K; Blain A; Burroughs M; McArthur N; Rao BM; Menegatti S
    ACS Comb Sci; 2020 Oct; 22(10):519-532. PubMed ID: 32786323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries.
    Bacon K; Menegatti S; Rao BM
    Methods Mol Biol; 2022; 2491():387-415. PubMed ID: 35482201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand Engineering via Yeast Surface Display and Adherent Cell Panning.
    Stern LA; Lown PS; Hackel BJ
    Methods Mol Biol; 2020; 2070():303-320. PubMed ID: 31625103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work.
    Shiota T; Mabuchi H; Tanaka-Yamano S; Yamano K; Endo T
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15179-83. PubMed ID: 21896724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40.
    Wiesner S; Stier G; Sattler M; Macias MJ
    J Mol Biol; 2002 Dec; 324(4):807-22. PubMed ID: 12460579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Yeast-Yeast Two Hybrid for the Discovery and Binding Affinity Estimation of Protein-Protein Interactions.
    Bacon K; Blain A; Bowen J; Burroughs M; McArthur N; Menegatti S; Rao BM
    ACS Synth Biol; 2021 Mar; 10(3):505-514. PubMed ID: 33587591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax.
    Bellot G; Cartron PF; Er E; Oliver L; Juin P; Armstrong LC; Bornstein P; Mihara K; Manon S; Vallette FM
    Cell Death Differ; 2007 Apr; 14(4):785-94. PubMed ID: 17096026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using molecular repertoires to identify high-affinity peptide ligands of the WW domain of human and mouse YAP.
    Linn H; Ermekova KS; Rentschler S; Sparks AB; Kay BK; Sudol M
    Biol Chem; 1997 Jun; 378(6):531-7. PubMed ID: 9224934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9.
    Liao H; Yuan C; Su MI; Yongkiettrakul S; Qin D; Li H; Byeon IJ; Pei D; Tsai MD
    J Mol Biol; 2000 Dec; 304(5):941-51. PubMed ID: 11124038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53.
    Yuan C; Yongkiettrakul S; Byeon IJ; Zhou S; Tsai MD
    J Mol Biol; 2001 Nov; 314(3):563-75. PubMed ID: 11846567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast Display for the Identification of Peptide-MHC Ligands of Immune Receptors.
    Huisman BD; Grace BE; Holec PV; Birnbaum ME
    Methods Mol Biol; 2022; 2491():263-291. PubMed ID: 35482196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands.
    Phipps ML; Lillo AM; Shou Y; Schmidt EN; Paavola CD; Naranjo L; Bemdich S; Swanson BI; Bradbury AR; Martinez JS
    PLoS One; 2016; 11(9):e0160940. PubMed ID: 27626637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mRNA display selection and solid-phase synthesis of Fc-binding cyclic peptide affinity ligands.
    Menegatti S; Hussain M; Naik AD; Carbonell RG; Rao BM
    Biotechnol Bioeng; 2013 Mar; 110(3):857-70. PubMed ID: 23108907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries and alanine scanning.
    Kokoszka ME; Kay BK
    Methods Mol Biol; 2015; 1248():173-88. PubMed ID: 25616333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein.
    Brix J; Rüdiger S; Bukau B; Schneider-Mergener J; Pfanner N
    J Biol Chem; 1999 Jun; 274(23):16522-30. PubMed ID: 10347216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases.
    Gerbeth C; Schmidt O; Rao S; Harbauer AB; Mikropoulou D; Opalińska M; Guiard B; Pfanner N; Meisinger C
    Cell Metab; 2013 Oct; 18(4):578-87. PubMed ID: 24093680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.