These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33090021)

  • 1. Physics-Guided Deep Learning for Drag Force Prediction in Dense Fluid-Particulate Systems.
    Muralidhar N; Bu J; Cao Z; He L; Ramakrishnan N; Tafti D; Karpatne A
    Big Data; 2020 Oct; 8(5):431-449. PubMed ID: 33090021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operator learning for urban water clarification hydrodynamics and particulate matter transport with physics-informed neural networks.
    Li H; Shatarah M
    Water Res; 2024 Mar; 251():121123. PubMed ID: 38241806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards complex dynamic physics system simulation with graph neural ordinary equations.
    Shi G; Zhang D; Jin M; Pan S; Yu PS
    Neural Netw; 2024 Aug; 176():106341. PubMed ID: 38692189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics-informed deep learning for prediction of CO
    Shokouhi P; Kumar V; Prathipati S; Hosseini SA; Giles CL; Kifer D
    J Contam Hydrol; 2021 Aug; 241():103835. PubMed ID: 34091408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating hydrodynamic simulations of urban drainage systems with physics-guided machine learning.
    Palmitessa R; Grum M; Engsig-Karup AP; Löwe R
    Water Res; 2022 Sep; 223():118972. PubMed ID: 35994785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DualFluidNet: An attention-based dual-pipeline network for fluid simulation.
    Chen Y; Zheng S; Jin M; Chang Y; Wang N
    Neural Netw; 2024 Sep; 177():106401. PubMed ID: 38805793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics.
    Xie J; Yao B
    Comput Biol Med; 2022 Jul; 146():105586. PubMed ID: 35751197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-Informed Deep Learning for Muscle Force Prediction With Unlabeled sEMG Signals.
    Ma S; Zhang J; Shi C; Di P; Robertson ID; Zhang ZQ
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1246-1256. PubMed ID: 38466606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the influence of particle shape and air velocity on the flowability in the respiratory tract: a computational fluid dynamics approach.
    Ali AM; Abo Dena AS; Yacoub MH; El-Sherbiny IM
    Drug Dev Ind Pharm; 2019 Jul; 45(7):1149-1156. PubMed ID: 31007093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised Denoising and Super-Resolution of Vascular Flow Data by Physics-Informed Machine Learning.
    Sautory T; Shadden SC
    J Biomech Eng; 2024 Sep; 146(9):. PubMed ID: 38529728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physics-based deep learning for modeling nonlinear pulse propagation in optical fibers.
    Sui H; Zhu H; Luo B; Taccheo S; Zou X; Yan L
    Opt Lett; 2022 Aug; 47(15):3912-3915. PubMed ID: 35913346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reinforcement learning approach to airfoil shape optimization.
    Dussauge TP; Sung WJ; Pinon Fischer OJ; Mavris DN
    Sci Rep; 2023 Jun; 13(1):9753. PubMed ID: 37328498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning.
    Zeng S; Pi D
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phy-Taylor: Partially Physics-Knowledge-Enhanced Deep Neural Networks via NN Editing.
    Mao Y; Gu Y; Sha L; Shao H; Wang Q; Abdelzaher T
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37883250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physics-Guided Generative Adversarial Networks for Sea Subsurface Temperature Prediction.
    Meng Y; Rigall E; Chen X; Gao F; Dong J; Chen S
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3357-3370. PubMed ID: 34757914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-incorporated convolutional recurrent neural networks for source identification and forecasting of dynamical systems.
    Saha P; Dash S; Mukhopadhyay S
    Neural Netw; 2021 Dec; 144():359-371. PubMed ID: 34547672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.