These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 33090117)
1. A Racially Unbiased, Machine Learning Approach to Prediction of Mortality: Algorithm Development Study. Allen A; Mataraso S; Siefkas A; Burdick H; Braden G; Dellinger RP; McCoy A; Pellegrini E; Hoffman J; Green-Saxena A; Barnes G; Calvert J; Das R JMIR Public Health Surveill; 2020 Oct; 6(4):e22400. PubMed ID: 33090117 [TBL] [Abstract][Full Text] [Related]
2. Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records. Nielsen AB; Thorsen-Meyer HC; Belling K; Nielsen AP; Thomas CE; Chmura PJ; Lademann M; Moseley PL; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Perner A; Brunak S Lancet Digit Health; 2019 Jun; 1(2):e78-e89. PubMed ID: 33323232 [TBL] [Abstract][Full Text] [Related]
3. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
4. Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data. Rojas JC; Carey KA; Edelson DP; Venable LR; Howell MD; Churpek MM Ann Am Thorac Soc; 2018 Jul; 15(7):846-853. PubMed ID: 29787309 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of the sequential organ failure assessment, acute physiology and chronic health evaluation II, and simplified acute physiology score II prognostic scoring systems in paraquat-poisoned patients in the intensive care unit. Lee JH; Hwang SY; Kim HR; Kim YW; Kang MJ; Cho KW; Lee DW; Kim YH Hum Exp Toxicol; 2017 May; 36(5):431-437. PubMed ID: 27387349 [TBL] [Abstract][Full Text] [Related]
6. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
7. Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy. Kang MW; Kim J; Kim DK; Oh KH; Joo KW; Kim YS; Han SS Crit Care; 2020 Feb; 24(1):42. PubMed ID: 32028984 [TBL] [Abstract][Full Text] [Related]
8. Prediction of outcome from intensive care: a prospective cohort study comparing Acute Physiology and Chronic Health Evaluation II and III prognostic systems in a United Kingdom intensive care unit. Beck DH; Taylor BL; Millar B; Smith GB Crit Care Med; 1997 Jan; 25(1):9-15. PubMed ID: 8989170 [TBL] [Abstract][Full Text] [Related]
9. Fairness in Predicting Cancer Mortality Across Racial Subgroups. Ganta T; Kia A; Parchure P; Wang MH; Besculides M; Mazumdar M; Smith CB JAMA Netw Open; 2024 Jul; 7(7):e2421290. PubMed ID: 38985468 [TBL] [Abstract][Full Text] [Related]
10. An intelligent warning model for early prediction of cardiac arrest in sepsis patients. Layeghian Javan S; Sepehri MM; Layeghian Javan M; Khatibi T Comput Methods Programs Biomed; 2019 Sep; 178():47-58. PubMed ID: 31416562 [TBL] [Abstract][Full Text] [Related]
11. The Development and Validation of Simplified Machine Learning Algorithms to Predict Prognosis of Hospitalized Patients With COVID-19: Multicenter, Retrospective Study. He F; Page JH; Weinberg KR; Mishra A J Med Internet Res; 2022 Jan; 24(1):e31549. PubMed ID: 34951865 [TBL] [Abstract][Full Text] [Related]
12. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
13. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment. Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095 [TBL] [Abstract][Full Text] [Related]
14. Development of Machine Learning Models to Validate a Medication Regimen Complexity Scoring Tool for Critically Ill Patients. Al-Mamun MA; Brothers T; Newsome AS Ann Pharmacother; 2021 Apr; 55(4):421-429. PubMed ID: 32929977 [TBL] [Abstract][Full Text] [Related]
15. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Lin K; Hu Y; Kong G Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181 [TBL] [Abstract][Full Text] [Related]
16. Performance of intensive care unit severity scoring systems across different ethnicities in the USA: a retrospective observational study. Sarkar R; Martin C; Mattie H; Gichoya JW; Stone DJ; Celi LA Lancet Digit Health; 2021 Apr; 3(4):e241-e249. PubMed ID: 33766288 [TBL] [Abstract][Full Text] [Related]
17. Critical care in the emergency department: A physiologic assessment and outcome evaluation. Nguyen HB; Rivers EP; Havstad S; Knoblich B; Ressler JA; Muzzin AM; Tomlanovich MC Acad Emerg Med; 2000 Dec; 7(12):1354-61. PubMed ID: 11099425 [TBL] [Abstract][Full Text] [Related]
18. A comparison of severity of illness scoring systems for intensive care unit patients: results of a multicenter, multinational study. The European/North American Severity Study Group. Castella X; Artigas A; Bion J; Kari A Crit Care Med; 1995 Aug; 23(8):1327-35. PubMed ID: 7634802 [TBL] [Abstract][Full Text] [Related]
19. Comparison of acute physiology and chronic health evaluations II and III and simplified acute physiology score II: a prospective cohort study evaluating these methods to predict outcome in a German interdisciplinary intensive care unit. Markgraf R; Deutschinoff G; Pientka L; Scholten T Crit Care Med; 2000 Jan; 28(1):26-33. PubMed ID: 10667495 [TBL] [Abstract][Full Text] [Related]
20. Performance of three prognostic models in patients with cancer in need of intensive care in a medical center in China. Xing X; Gao Y; Wang H; Huang C; Qu S; Zhang H; Wang H; Sun K PLoS One; 2015; 10(6):e0131329. PubMed ID: 26110534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]