BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33090421)

  • 21. Therapeutic effects of three human-derived materials in a mouse corneal alkali burn model.
    Han KE; Park MH; Kong KH; Choi E; Choi KR; Jun RM
    Cutan Ocul Toxicol; 2019 Dec; 38(4):315-321. PubMed ID: 30741024
    [No Abstract]   [Full Text] [Related]  

  • 22. Anti-angiogenic effect of a humanized antibody blocking the Wnt/β-catenin signaling pathway.
    Qiu F; Shin Y; Chen D; Cheng R; Chen Q; Zhou K; Larrick JW; Mendelson AR; Ma JX
    Microvasc Res; 2018 Sep; 119():29-37. PubMed ID: 29630973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing.
    Tsai CY; Woung LC; Yen JC; Tseng PC; Chiou SH; Sung YJ; Liu KT; Cheng YH
    Carbohydr Polym; 2016 Jan; 135():308-15. PubMed ID: 26453882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Treatment of corneal chemical alkali burns with a crosslinked thiolated hyaluronic acid film.
    Griffith GL; Wirostko B; Lee HK; Cornell LE; McDaniel JS; Zamora DO; Johnson AJ
    Burns; 2018 Aug; 44(5):1179-1186. PubMed ID: 29429747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation.
    Shin YJ; Hyon JY; Choi WS; Yi K; Chung ES; Chung TY; Wee WR
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4452-8. PubMed ID: 23716625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alkali burn-induced synthesis of inflammatory eicosanoids in rabbit corneal epithelium.
    Conners MS; Urbano F; Vafeas C; Stoltz RA; Dunn MW; Schwartzman ML
    Invest Ophthalmol Vis Sci; 1997 Sep; 38(10):1963-71. PubMed ID: 9331260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of amniotic membrane extract eye drop (AMEED) in in vivo cultivation of limbal stem cells.
    Baradaran-Rafii A; Asl NS; Ebrahimi M; Jabbehdari S; Bamdad S; Roshandel D; Eslani M; Momeni M
    Ocul Surf; 2018 Jan; 16(1):146-153. PubMed ID: 29104070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of amniotic membrane transplantation as an adjunct to medical therapy as compared with medical therapy alone in acute ocular burns.
    Tamhane A; Vajpayee RB; Biswas NR; Pandey RM; Sharma N; Titiyal JS; Tandon R
    Ophthalmology; 2005 Nov; 112(11):1963-9. PubMed ID: 16198422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A clinical study of amniotic membrane transplantation for severe eye burns at the acute stage].
    Zhou SY; Chen JQ; Liu ZG; Huang T; Chen LS
    Zhonghua Yan Ke Za Zhi; 2004 Feb; 40(2):97-100. PubMed ID: 15059561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amniotic membrane extraction solution for ocular chemical burns.
    Liang L; Li W; Ling S; Sheha H; Qiu W; Li C; Liu Z
    Clin Exp Ophthalmol; 2009 Dec; 37(9):855-63. PubMed ID: 20092594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of adipose-derived stem cells on scleral contact lens carrier in an animal model of severe acute alkaline burn.
    Espandar L; Caldwell D; Watson R; Blanco-Mezquita T; Zhang S; Bunnell B
    Eye Contact Lens; 2014 Jul; 40(4):243-7. PubMed ID: 24901976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. (-)-Epigallocatechin-3-gallate, reduces corneal damage secondary from experimental grade II alkali burns in mice.
    Gulias-Cañizo R; Lagunes-Guillén A; González-Robles A; Sánchez-Guzmán E; Castro-Muñozledo F
    Burns; 2019 Mar; 45(2):398-412. PubMed ID: 30600126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunohistochemical observation of amniotic membrane patching on a corneal alkali burn in vivo.
    Takahashi H; Igarashi T; Fujimoto C; Ozaki N; Ishizaki M
    Jpn J Ophthalmol; 2007; 51(1):3-9. PubMed ID: 17295133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Bromfenac Sodium Nanopolymer Used in Anterior Segment of the Eye on Corneal Neovascularization.
    Song L; Liu X; Chen N; Liu J; Nie A; Li W
    Cell Mol Biol (Noisy-le-grand); 2022 Mar; 68(3):330-338. PubMed ID: 35988169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the effects of resveratrol and bevacizumab on experimental corneal alkali burn.
    Doganay S; Firat PG; Cankaya C; Kirimlioglu H
    Burns; 2013 Mar; 39(2):326-30. PubMed ID: 22922008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation the effect of
    Yılmaz U; Kaya H; Turan M; Bir F; Şahin B
    Cutan Ocul Toxicol; 2019 Dec; 38(4):356-359. PubMed ID: 31137972
    [No Abstract]   [Full Text] [Related]  

  • 37. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model.
    Hackett JM; Lagali N; Merrett K; Edelhauser H; Sun Y; Gan L; Griffith M; Fagerholm P
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):651-7. PubMed ID: 20847116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Nintedanib Nanothermoreversible Hydrogel on Neovascularization in an Ocular Alkali Burn Rat Model.
    Liu X; Wu S; Gong Y; Yang L
    Curr Eye Res; 2022 Dec; 47(12):1578-1589. PubMed ID: 36259508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal concentration of human epidermal growth factor (hEGF) for epithelial healing in experimental corneal alkali wounds.
    Kim MJ; Jun RM; Kim WK; Hann HJ; Chong YH; Park HY; Chung JH
    Curr Eye Res; 2001 Apr; 22(4):272-9. PubMed ID: 11462166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustained Subconjunctival Delivery of Infliximab Protects the Cornea and Retina Following Alkali Burn to the Eye.
    Zhou C; Robert MC; Kapoulea V; Lei F; Stagner AM; Jakobiec FA; Dohlman CH; Paschalis EI
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):96-105. PubMed ID: 28114570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.