These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 33090519)
1. Phytochrome A and its Functional Manifestations in Etiolated and Far-red Light-grown Seedlings of the Wild-type Rice and its Hebiba and Cpm2 Mutants Deficient in the Defense-related Phytohormone Jasmonic Acid. Sineshchekov V; Koppel L; Riemann M; Nick P Photochem Photobiol; 2021 Mar; 97(2):335-342. PubMed ID: 33090519 [TBL] [Abstract][Full Text] [Related]
2. The jasmonate-free rice mutant hebiba is affected in the response of phyA'/phyA" pools and protochlorophyllide biosynthesis to far-red light. Sineshchekov VA; Loskovich AV; Riemann M; Nick P Photochem Photobiol Sci; 2004; 3(11-12):1058-62. PubMed ID: 15570396 [TBL] [Abstract][Full Text] [Related]
3. Two native pools of phytochrome A in monocots: Evidence from fluorescence investigations of phytochrome mutants of rice. Sineshchekov V; Loskovich A; Inagaki N; Takano M Photochem Photobiol; 2006; 82(4):1116-22. PubMed ID: 17205634 [TBL] [Abstract][Full Text] [Related]
4. The phosphatase/kinase balance affects phytochrome A and its native pools, phyA' and phyA″, in etiolated maize roots: evidence from the induction of phyA' destruction by a protein phosphatase inhibitor sodium fluoride. Sineshchekov V; Shor E; Koppel L Photochem Photobiol Sci; 2021 Nov; 20(11):1429-1437. PubMed ID: 34586621 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of rice phytochrome A mutants. Takano M; Kanegae H; Shinomura T; Miyao A; Hirochika H; Furuya M Plant Cell; 2001 Mar; 13(3):521-34. PubMed ID: 11251094 [TBL] [Abstract][Full Text] [Related]
7. Up-regulation by phytochrome A of the active protochlorophyllide, Pchlide655, biosynthesis in dicots under far-red light. Sineshchekov V; Belyaeva O; Sudnitsin A J Photochem Photobiol B; 2004 Mar; 74(1):47-54. PubMed ID: 15043846 [TBL] [Abstract][Full Text] [Related]
8. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light. Kneissl J; Shinomura T; Furuya M; Bolle C Mol Plant; 2008 Jan; 1(1):84-102. PubMed ID: 20031917 [TBL] [Abstract][Full Text] [Related]
9. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Li T; Jia KP; Lian HL; Yang X; Li L; Yang HQ Biochem Biophys Res Commun; 2014 Nov; 454(1):78-83. PubMed ID: 25450360 [TBL] [Abstract][Full Text] [Related]
10. Phytochrome A requires jasmonate for photodestruction. Riemann M; Bouyer D; Hisada A; Müller A; Yatou O; Weiler EW; Takano M; Furuya M; Nick P Planta; 2009 Apr; 229(5):1035-45. PubMed ID: 19184094 [TBL] [Abstract][Full Text] [Related]
11. Two native types of phytochrome A, phyA' and phyA", differ by the state of phosphorylation at the N-terminus as revealed by fluorescence investigations of the Ser/Ala mutant of rice phyA expressed in transgenic Arabidopsis. Sineshchekov VA; Koppel LA; Bolle C Funct Plant Biol; 2018 Jan; 45(2):150-159. PubMed ID: 32291029 [TBL] [Abstract][Full Text] [Related]
12. Molecular interaction of jasmonate and phytochrome A signalling. Hsieh HL; Okamoto H J Exp Bot; 2014 Jun; 65(11):2847-57. PubMed ID: 24868039 [TBL] [Abstract][Full Text] [Related]
13. Two modes of the light-induced phytochrome A decline--with and without changes in the proportion of its isoforms (phyA' and phyA''): evidence from fluorescence investigations of mutant phyA-3D pea. Sineshchekov VA; Weller JL J Photochem Photobiol B; 2004 Sep; 75(3):127-35. PubMed ID: 15341926 [TBL] [Abstract][Full Text] [Related]
14. Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Robson F; Okamoto H; Patrick E; Harris SR; Wasternack C; Brearley C; Turner JG Plant Cell; 2010 Apr; 22(4):1143-60. PubMed ID: 20435902 [TBL] [Abstract][Full Text] [Related]
15. Extreme dehydration of plant tissues irreversibly converts the major and variable phyA' into the minor and conserved phyA''. Sineshchekov VA J Photochem Photobiol B; 2006 Nov; 85(2):85-91. PubMed ID: 16829116 [TBL] [Abstract][Full Text] [Related]
16. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity. Hazman M; Hause B; Eiche E; Nick P; Riemann M J Exp Bot; 2015 Jun; 66(11):3339-52. PubMed ID: 25873666 [TBL] [Abstract][Full Text] [Related]
17. JA modulates phytochrome a signaling via repressing FHY3 activity by JAZ proteins. Liu Y; Wang H Plant Signal Behav; 2020 Mar; 15(3):1726636. PubMed ID: 32043408 [TBL] [Abstract][Full Text] [Related]
18. Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. Wang F; Guo Z; Li H; Wang M; Onac E; Zhou J; Xia X; Shi K; Yu J; Zhou Y Plant Physiol; 2016 Jan; 170(1):459-71. PubMed ID: 26527654 [TBL] [Abstract][Full Text] [Related]
19. The system of phytochromes: photobiophysics and photobiochemistry in vivo. Sineshchekov VA Membr Cell Biol; 1998; 12(5):691-720. PubMed ID: 10379648 [TBL] [Abstract][Full Text] [Related]
20. Phytochrome A and B Negatively Regulate Salt Stress Tolerance of Nicotiana tobacum via ABA-Jasmonic Acid Synergistic Cross-Talk. Yang T; Lv R; Li J; Lin H; Xi D Plant Cell Physiol; 2018 Nov; 59(11):2381-2393. PubMed ID: 30124925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]