These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33090703)

  • 1. Nickel is a Different Pickle: Trends in Water Oxidation Catalysis for Molecular Nickel Complexes.
    Hessels J; Masferrer-Rius E; Yu F; Detz RJ; Klein Gebbink RJM; Reek JNH
    ChemSusChem; 2020 Dec; 13(24):6629-6634. PubMed ID: 33090703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential- and Buffer-Dependent Catalyst Decomposition during Nickel-Based Water Oxidation Catalysis.
    Hessels J; Yu F; Detz RJ; Reek JNH
    ChemSusChem; 2020 Nov; 13(21):5625-5631. PubMed ID: 32959962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.
    Chen G; Chen L; Ng SM; Lau TC
    ChemSusChem; 2014 Jan; 7(1):127-34. PubMed ID: 24155063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel(II) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis.
    Balamurugan M; Mayilmurugan R; Suresh E; Palaniandavar M
    Dalton Trans; 2011 Oct; 40(37):9413-24. PubMed ID: 21850329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous Water Oxidation Catalyzed by First-Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential.
    Hsu WC; Wang YH
    ChemSusChem; 2022 Mar; 15(5):e202102378. PubMed ID: 34881515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Through the Looking Glass: Using the Lens of [SNS]-Pincer Ligands to Examine First-Row Metal Bifunctional Catalysts.
    Elsby MR; Baker RT
    Acc Chem Res; 2023 Apr; 56(7):798-809. PubMed ID: 36921212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis.
    Smith PT; Nichols EM; Cao Z; Chang CJ
    Acc Chem Res; 2020 Mar; 53(3):575-587. PubMed ID: 32124601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Ligand Carboxylates on Electrocatalyzed Water Oxidation.
    Das B; Rahaman A; Shatskiy A; Verho O; Kärkäs MD; Åkermark B
    Acc Chem Res; 2021 Sep; 54(17):3326-3337. PubMed ID: 34488345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine-Dicarboxylate Complexes.
    Shaffer DW; Xie Y; Szalda DJ; Concepcion JJ
    Inorg Chem; 2016 Nov; 55(22):12024-12035. PubMed ID: 27802025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese Alkyl Carbonyl Complexes: From Iconic Stoichiometric Textbook Reactions to Catalytic Applications.
    Weber S; Kirchner K
    Acc Chem Res; 2022 Sep; 55(18):2740-2751. PubMed ID: 36074912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond.
    Sun W; Sun Q
    Acc Chem Res; 2019 Aug; 52(8):2370-2381. PubMed ID: 31333021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron Pentapyridyl Complexes as Molecular Water Oxidation Catalysts: Strong Influence of a Chloride Ligand and pH in Altering the Mechanism.
    Das B; Orthaber A; Ott S; Thapper A
    ChemSusChem; 2016 May; 9(10):1178-86. PubMed ID: 27114078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis.
    Liao RZ; Siegbahn PEM
    ChemSusChem; 2017 Nov; 10(22):4236-4263. PubMed ID: 28875583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Half-sandwich iridium complexes for homogeneous water-oxidation catalysis.
    Blakemore JD; Schley ND; Balcells D; Hull JF; Olack GW; Incarvito CD; Eisenstein O; Brudvig GW; Crabtree RH
    J Am Chem Soc; 2010 Nov; 132(45):16017-29. PubMed ID: 20964386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of Organic Compounds Using Water as the Oxidant with H
    Kar S; Milstein D
    Acc Chem Res; 2022 Aug; 55(16):2304-2315. PubMed ID: 35881940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation.
    Zhang LH; Mathew S; Hessels J; Reek JNH; Yu F
    ChemSusChem; 2021 Jan; 14(1):234-250. PubMed ID: 32991076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Alkaline Water Oxidation with a Regenerable Nickel Pseudo-Complex.
    Zhang P; Wang P; Wang W; Wu Q; Xiao M; Alberto R; Zhang Y; Cui C
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48661-48668. PubMed ID: 34619966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating the electrocatalytic activity of mononuclear nickel complexes toward water oxidation by tertiary amine group.
    Chen X; Liao X; Dai C; Zhu L; Hong L; Yang X; Ruan Z; Liang X; Lin J
    Dalton Trans; 2022 Dec; 51(48):18678-18684. PubMed ID: 36448634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.