These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 33090730)
1. A multigenotype maize silk expression atlas reveals how exposure-related stresses are mitigated following emergence from husk leaves. McNinch C; Chen K; Dennison T; Lopez M; Yandeau-Nelson MD; Lauter N Plant Genome; 2020 Oct; ():e20040. PubMed ID: 33090730 [TBL] [Abstract][Full Text] [Related]
2. Genetic and environmental variation impact the cuticular hydrocarbon metabolome on the stigmatic surfaces of maize. Dennison T; Qin W; Loneman DM; Condon SGF; Lauter N; Nikolau BJ; Yandeau-Nelson MD BMC Plant Biol; 2019 Oct; 19(1):430. PubMed ID: 31623561 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic Profiling of the Maize ( Li P; Cao W; Fang H; Xu S; Yin S; Zhang Y; Lin D; Wang J; Chen Y; Xu C; Yang Z Front Plant Sci; 2017; 8():290. PubMed ID: 28298920 [TBL] [Abstract][Full Text] [Related]
4. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize. Loneman DM; Peddicord L; Al-Rashid A; Nikolau BJ; Lauter N; Yandeau-Nelson MD PLoS One; 2017; 12(7):e0180850. PubMed ID: 28700694 [TBL] [Abstract][Full Text] [Related]
5. An updated gene atlas for maize reveals organ-specific and stress-induced genes. Hoopes GM; Hamilton JP; Wood JC; Esteban E; Pasha A; Vaillancourt B; Provart NJ; Buell CR Plant J; 2019 Mar; 97(6):1154-1167. PubMed ID: 30537259 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433 [TBL] [Abstract][Full Text] [Related]
7. Protocols to enable fluorescence microscopy of microbial interactions on living maize silks (style tissue). Thompson MEH; Raizada MN J Microbiol Methods; 2024 Oct; 225():107027. PubMed ID: 39214401 [TBL] [Abstract][Full Text] [Related]
8. Addition of individual chromosomes of maize inbreds B73 and Mo17 to oat cultivars Starter and Sun II: maize chromosome retention, transmission, and plant phenotype. Rines HW; Phillips RL; Kynast RG; Okagaki RJ; Galatowitsch MW; Huettl PA; Stec AO; Jacobs MS; Suresh J; Porter HL; Walch MD; Cabral CB Theor Appl Genet; 2009 Nov; 119(7):1255-64. PubMed ID: 19707741 [TBL] [Abstract][Full Text] [Related]
9. Natural variation for alleles under epigenetic control by the maize chromomethylase zmet2. Makarevitch I; Stupar RM; Iniguez AL; Haun WJ; Barbazuk WB; Kaeppler SM; Springer NM Genetics; 2007 Oct; 177(2):749-60. PubMed ID: 17660570 [TBL] [Abstract][Full Text] [Related]
11. ZmGns, a maize class I β-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity. Xie YR; Raruang Y; Chen ZY; Brown RL; Cleveland TE J Integr Plant Biol; 2015 Mar; 57(3):271-83. PubMed ID: 25251325 [TBL] [Abstract][Full Text] [Related]
12. Combined transcriptome and metabolome analysis reveals the effects of light quality on maize hybrids. Zhan W; Guo G; Cui L; Rashid MAR; Jiang L; Sun G; Yang J; Zhang Y BMC Plant Biol; 2023 Jan; 23(1):41. PubMed ID: 36653749 [TBL] [Abstract][Full Text] [Related]
13. Roles of the Castorina G; Bigelow M; Hattery T; Zilio M; Sangiorgio S; Caporali E; Venturini G; Iriti M; Yandeau-Nelson MD; Consonni G Front Plant Sci; 2023; 14():1228394. PubMed ID: 37546274 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomics and Alternative Splicing Analyses Reveal Large Differences between Maize Lines B73 and Mo17 in Response to Aphid Song J; Liu H; Zhuang H; Zhao C; Xu Y; Wu S; Qi J; Li J; Hettenhausen C; Wu J Front Plant Sci; 2017; 8():1738. PubMed ID: 29067035 [TBL] [Abstract][Full Text] [Related]
15. High spatial resolution mass spectrometry imaging reveals the genetically programmed, developmental modification of the distribution of thylakoid membrane lipids among individual cells of maize leaf. Dueñas ME; Klein AT; Alexander LE; Yandeau-Nelson MD; Nikolau BJ; Lee YJ Plant J; 2017 Feb; 89(4):825-838. PubMed ID: 27859865 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. Zhang J; Liao J; Ling Q; Xi Y; Qian Y BMC Genomics; 2022 Feb; 23(1):125. PubMed ID: 35151253 [TBL] [Abstract][Full Text] [Related]
17. Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. Miller SS; Reid LM; Butler G; Winter SP; McGoldrick NJ J Agric Food Chem; 2003 Nov; 51(23):6702-8. PubMed ID: 14582963 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptome profiling and weighted gene co-expression network analysis to identify core genes in maize ( Kumar A; Kanak KR; Arunachalam A; Dass RS; Lakshmi PTV Front Plant Sci; 2022; 13():985396. PubMed ID: 36388593 [TBL] [Abstract][Full Text] [Related]
19. Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage. Cui H; Zhou G; Ruan H; Zhao J; Hasi A; Zong N Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679082 [TBL] [Abstract][Full Text] [Related]
20. Expression profiles of cell-wall related genes vary broadly between two common maize inbreds during stem development. Penning BW; Shiga TM; Klimek JF; SanMiguel PJ; Shreve J; Thimmapuram J; Sykes RW; Davis MF; McCann MC; Carpita NC BMC Genomics; 2019 Oct; 20(1):785. PubMed ID: 31664907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]