These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33090755)

  • 1. Direct Femtosecond Laser Printing of Silk Fibroin Microstructures.
    Santos MV; Paula KT; de Andrade MB; Gomes EM; Marques LF; Ribeiro SJL; Mendonça CR
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50033-50038. PubMed ID: 33090755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D freeform printing of silk fibroin.
    Rodriguez MJ; Dixon TA; Cohen E; Huang W; Omenetto FG; Kaplan DL
    Acta Biomater; 2018 Apr; 71():379-387. PubMed ID: 29550442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin.
    Mu X; Gonzalez-Obeso C; Xia Z; Sahoo JK; Li G; Cebe P; Zhang YS; Kaplan DL
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics.
    Kook G; Jeong S; Kim SH; Kim MK; Lee S; Cho IJ; Choi N; Lee HJ
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):115-124. PubMed ID: 30480426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of silk fibroins improves the cytocompatibility of silk fibroin derived materials: a platform for the production of tuneable material.
    Volkov V; Vasconcelos A; Sárria MP; Gomes AC; Cavaco-Paulo A
    Biotechnol J; 2014 Oct; 9(10):1267-78. PubMed ID: 25087614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards understanding the mechanism of 3D printing using protein: Femtosecond laser direct writing of microstructures made from homopeptides.
    Serien D; Narazaki A; Sugioka K
    Acta Biomater; 2023 Jul; 164():139-150. PubMed ID: 37062438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypeptide templating for designer hierarchical materials.
    Sun H; Marelli B
    Nat Commun; 2020 Jan; 11(1):351. PubMed ID: 31953407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants.
    Costa JB; Silva-Correia J; Oliveira JM; Reis RL
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 29106065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Inkjet Printing and Propulsion Analysis of Silk-based Self-propelled Micro-stirrers.
    Gregory DA; Kumar P; Jimenez-Franco A; Zhang Y; Zhang Y; Ebbens SJ; Zhao X
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Gd/Eu-codoped SmPO4 nanorods for dual-modal magnetic resonance and bio-optical imaging.
    Wu Z; Huang Z; Yin G; Wang L; Gao F
    J Colloid Interface Sci; 2016 Mar; 466():1-11. PubMed ID: 26692538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Printing of Pure Proteinaceous Microstructures by Femtosecond Laser Multiphoton Cross-Linking.
    Serien D; Sugioka K
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1279-1287. PubMed ID: 33464859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists.
    Sun YL; Li Q; Sun SM; Huang JC; Zheng BY; Chen QD; Shao ZZ; Sun HB
    Nat Commun; 2015 Oct; 6():8612. PubMed ID: 26472600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of multiphoton absorption of silk fibroin using the Z-scan technique.
    Applegate MB; Marelli B; Kaplan DL; Omenetto FG
    Opt Express; 2013 Dec; 21(24):29637-42. PubMed ID: 24514515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling microstructure of three-dimensional scaffolds from regenerated silk fibroin by adjusting pH.
    Cho SY; Heo S; Jin HJ
    J Nanosci Nanotechnol; 2012 Jan; 12(1):806-10. PubMed ID: 22524061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery.
    Zhou J; Zhang B; Shi L; Zhong J; Zhu J; Yan J; Wang P; Cao C; He D
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21813-21. PubMed ID: 25536875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation.
    Wang C; Fang H; Qi X; Hang C; Sun Y; Peng Z; Wei W; Wang Y
    Acta Biomater; 2019 Jun; 91():99-111. PubMed ID: 31028907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of layered chitosan/silk fibroin/nano-hydroxyapatite scaffolds with designed composition and mechanical properties.
    Zhou T; Wu J; Liu J; Luo Y; Wan Y
    Biomed Mater; 2015 Jul; 10(4):045013. PubMed ID: 26225911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation.
    Cengiz IF; Pereira H; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM
    J Mater Sci Mater Med; 2019 May; 30(6):63. PubMed ID: 31127379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk Fibroin Based Drug Delivery Applications: Promises and Challenges.
    Wani SUD; Veerabhadrappa GH
    Curr Drug Targets; 2018; 19(10):1177-1190. PubMed ID: 29283071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.