These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Unveiling the Loss Mode Enabled Tunable Plasmonic Chirality at Flat Metal Surface. Wang S; Gou X; Shi P; Lin M; Yang A; Du L; Yuan X ACS Nano; 2024 Oct; 18(40):27503-27510. PubMed ID: 39324866 [TBL] [Abstract][Full Text] [Related]
26. Chemically Engineered Au-Ag Plasmonic Nanostructures to Realize Large Area and Flexible Metamaterials. Kim SJ; Seong M; Yun HW; Ahn J; Lee H; Oh SJ; Hong SH ACS Appl Mater Interfaces; 2018 Aug; 10(30):25652-25659. PubMed ID: 29979023 [TBL] [Abstract][Full Text] [Related]
27. Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking. Chen Y; Gao J; Yang X Nano Lett; 2018 Jan; 18(1):520-527. PubMed ID: 29206469 [TBL] [Abstract][Full Text] [Related]
28. Multipolar Effects in the Optical Active Second Harmonic Generation from Sawtooth Chiral Metamaterials. Su H; Guo Y; Gao W; Ma J; Zhong Y; Tam WY; Chan CT; Wong KS Sci Rep; 2016 Feb; 6():22061. PubMed ID: 26911449 [TBL] [Abstract][Full Text] [Related]
29. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Lee HE; Ahn HY; Mun J; Lee YY; Kim M; Cho NH; Chang K; Kim WS; Rho J; Nam KT Nature; 2018 Apr; 556(7701):360-365. PubMed ID: 29670265 [TBL] [Abstract][Full Text] [Related]
30. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. Tan L; Fu W; Gao Q; Wang PP Adv Mater; 2024 Jan; 36(3):e2309033. PubMed ID: 37944554 [TBL] [Abstract][Full Text] [Related]
31. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. Abdulrahman NA; Fan Z; Tonooka T; Kelly SM; Gadegaard N; Hendry E; Govorov AO; Kadodwala M Nano Lett; 2012 Feb; 12(2):977-83. PubMed ID: 22263754 [TBL] [Abstract][Full Text] [Related]
32. Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials. Ahn HY; Yoo S; Cho NH; Kim RM; Kim H; Huh JH; Lee S; Nam KT Acc Chem Res; 2019 Oct; 52(10):2768-2783. PubMed ID: 31536328 [TBL] [Abstract][Full Text] [Related]
33. The fabrication of three-dimensional plasmonic chiral structures by dynamic shadowing growth. Larsen GK; He Y; Ingram W; LaPaquette ET; Wang J; Zhao Y Nanoscale; 2014 Aug; 6(16):9467-76. PubMed ID: 24975016 [TBL] [Abstract][Full Text] [Related]
34. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers. He Y; Larsen GK; Ingram W; Zhao Y Nano Lett; 2014; 14(4):1976-81. PubMed ID: 24646023 [TBL] [Abstract][Full Text] [Related]
35. Using optical vortex to control the chirality of twisted metal nanostructures. Toyoda K; Miyamoto K; Aoki N; Morita R; Omatsu T Nano Lett; 2012 Jul; 12(7):3645-9. PubMed ID: 22690654 [TBL] [Abstract][Full Text] [Related]
37. Chiral Au-Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces. Liu C; Sun L; Yang G; Cheng Q; Wang C; Tao Y; Sun X; Wang Z; Zhang Q Small; 2024 Jun; 20(23):e2310353. PubMed ID: 38150652 [TBL] [Abstract][Full Text] [Related]
38. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality-Dependent Photocatalysis. Tan L; Yu SJ; Jin Y; Li J; Wang PP Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202112400. PubMed ID: 34936187 [TBL] [Abstract][Full Text] [Related]