BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33091446)

  • 1. Digging deeper through glucose metabolism and its regulators in cancer and metastasis.
    Ghanavat M; Shahrouzian M; Deris Zayeri Z; Banihashemi S; Kazemi SM; Saki N
    Life Sci; 2021 Jan; 264():118603. PubMed ID: 33091446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells.
    Chen JQ; Russo J
    Biochim Biophys Acta; 2012 Dec; 1826(2):370-84. PubMed ID: 22750268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect.
    San-Millán I; Brooks GA
    Carcinogenesis; 2017 Feb; 38(2):119-133. PubMed ID: 27993896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling to determine key regulators of hypoxia effects on the lactate production in the glycolysis pathway.
    Hashemzadeh S; Shahmorad S; Rafii-Tabar H; Omidi Y
    Sci Rep; 2020 Jun; 10(1):9163. PubMed ID: 32514127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. lncRNAs: Key Regulators of Signaling Pathways in Tumor Glycolysis.
    Wen L; Tan C; Ma S; Li X
    Dis Markers; 2022; 2022():2267963. PubMed ID: 36124026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic dehydrogenase and cancer: an overview.
    Gallo M; Sapio L; Spina A; Naviglio D; Calogero A; Naviglio S
    Front Biosci (Landmark Ed); 2015 Jun; 20(8):1234-49. PubMed ID: 25961554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters.
    Marchiq I; Pouysségur J
    J Mol Med (Berl); 2016 Feb; 94(2):155-71. PubMed ID: 26099350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton export upregulates aerobic glycolysis.
    Russell S; Xu L; Kam Y; Abrahams D; Ordway B; Lopez AS; Bui MM; Johnson J; Epstein T; Ruiz E; Lloyd MC; Swietach P; Verduzco D; Wojtkowiak J; Gillies RJ
    BMC Biol; 2022 Jul; 20(1):163. PubMed ID: 35840963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis.
    Liu W; Beck BH; Vaidya KS; Nash KT; Feeley KP; Ballinger SW; Pounds KM; Denning WL; Diers AR; Landar A; Dhar A; Iwakuma T; Welch DR
    Cancer Res; 2014 Feb; 74(3):954-63. PubMed ID: 24351292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development.
    Wilde L; Roche M; Domingo-Vidal M; Tanson K; Philp N; Curry J; Martinez-Outschoorn U
    Semin Oncol; 2017 Jun; 44(3):198-203. PubMed ID: 29248131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycolytic genes in cancer cells are more than glucose metabolic regulators.
    Hu ZY; Xiao L; Bode AM; Dong Z; Cao Y
    J Mol Med (Berl); 2014 Aug; 92(8):837-45. PubMed ID: 24906457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of GSK-3β activity suppresses HCC malignant phenotype by inhibiting glycolysis via activating AMPK/mTOR signaling.
    Fang G; Zhang P; Liu J; Zhang X; Zhu X; Li R; Wang H
    Cancer Lett; 2019 Oct; 463():11-26. PubMed ID: 31404613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting LIN28B reprograms tumor glucose metabolism and acidic microenvironment to suppress cancer stemness and metastasis.
    Chen C; Bai L; Cao F; Wang S; He H; Song M; Chen H; Liu Y; Guo J; Si Q; Pan Y; Zhu R; Chuang TH; Xiang R; Luo Y
    Oncogene; 2019 Jun; 38(23):4527-4539. PubMed ID: 30742065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction to the molecular basis of cancer metabolism and the Warburg effect.
    Ngo DC; Ververis K; Tortorella SM; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):819-23. PubMed ID: 25672512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crucial players in glycolysis: Cancer progress.
    Abbaszadeh Z; Çeşmeli S; Biray Avcı Ç
    Gene; 2020 Feb; 726():144158. PubMed ID: 31629815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis.
    Dhup S; Dadhich RK; Porporato PE; Sonveaux P
    Curr Pharm Des; 2012; 18(10):1319-30. PubMed ID: 22360558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.