These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 33091473)
1. Enhanced osteogenesis using poly (l-lactide-co-d, l-lactide)/poly (acrylic acid) nanofibrous scaffolds in presence of dexamethasone-loaded molecularly imprinted polymer nanoparticles. Ghaffari-Bohlouli P; Zahedi P; Shahrousvand M Int J Biol Macromol; 2020 Dec; 165(Pt B):2363-2377. PubMed ID: 33091473 [TBL] [Abstract][Full Text] [Related]
2. Performance evaluation of poly (l-lactide-co-D, l-lactide)/poly (acrylic acid) blends and their nanofibers for tissue engineering applications. Ghaffari-Bohlouli P; Shahrousvand M; Zahedi P; Shahrousvand M Int J Biol Macromol; 2019 Feb; 122():1008-1016. PubMed ID: 30217645 [TBL] [Abstract][Full Text] [Related]
3. Conductive conduit based on electrospun poly (l-lactide-co-D, l-lactide) nanofibers containing 4-aminopyridine-loaded molecularly imprinted poly (methacrylic acid) nanoparticles used for peripheral nerve regeneration. Fallah-Darrehchi M; Zahedi P; Safarian S; Ghaffari-Bohlouli P; Aeinehvand R Int J Biol Macromol; 2021 Nov; 190():499-507. PubMed ID: 34499956 [TBL] [Abstract][Full Text] [Related]
4. Osteogenesis enhancement using poly (l-lactide-co-d, l-lactide)/poly (vinyl alcohol) nanofibrous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Ghaffari-Bohlouli P; Jafari H; Khatibi A; Bakhtiari M; Tavana B; Zahedi P; Shavandi A Int J Biol Macromol; 2021 Jul; 182():168-178. PubMed ID: 33838184 [TBL] [Abstract][Full Text] [Related]
5. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering. Ganesh N; Jayakumar R; Koyakutty M; Mony U; Nair SV Tissue Eng Part A; 2012 Sep; 18(17-18):1867-81. PubMed ID: 22725098 [TBL] [Abstract][Full Text] [Related]
6. Poly-l-lactic acid scaffold incorporated chitosan-coated mesoporous silica nanoparticles as pH-sensitive composite for enhanced osteogenic differentiation of human adipose tissue stem cells by dexamethasone delivery. Porgham Daryasari M; Dusti Telgerd M; Hossein Karami M; Zandi-Karimi A; Akbarijavar H; Khoobi M; Seyedjafari E; Birhanu G; Khosravian P; SadatMahdavi F Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):4020-4029. PubMed ID: 31595797 [TBL] [Abstract][Full Text] [Related]
7. The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells. Amjadian S; Seyedjafari E; Zeynali B; Shabani I Int J Pharm; 2016 Jun; 507(1-2):1-11. PubMed ID: 27107902 [TBL] [Abstract][Full Text] [Related]
8. Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core-shell nanofibers for bone tissue engineering applications. Wang M; Zhou Y; Shi D; Chang R; Zhang J; Keidar M; Webster TJ Biomater Sci; 2019 May; 7(6):2430-2439. PubMed ID: 30933194 [TBL] [Abstract][Full Text] [Related]
10. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. Duan S; Yang X; Mei F; Tang Y; Li X; Shi Y; Mao J; Zhang H; Cai Q J Biomed Mater Res A; 2015 Apr; 103(4):1424-35. PubMed ID: 25046153 [TBL] [Abstract][Full Text] [Related]
11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
12. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. Sankar D; Shalumon KT; Chennazhi KP; Menon D; Jayakumar R Tissue Eng Part A; 2014 Jun; 20(11-12):1689-702. PubMed ID: 24377950 [TBL] [Abstract][Full Text] [Related]
13. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Gandhimathi C; Venugopal J; Ravichandran R; Sundarrajan S; Suganya S; Ramakrishna S Macromol Biosci; 2013 Jun; 13(6):696-706. PubMed ID: 23529905 [TBL] [Abstract][Full Text] [Related]
14. Surface mineralized hybrid nanofibrous scaffolds based on poly(l-lactide) and alginate enhances osteogenic differentiation of stem cells. Ataie M; Shabani I; Seyedjafari E J Biomed Mater Res A; 2019 Mar; 107(3):586-596. PubMed ID: 30390410 [TBL] [Abstract][Full Text] [Related]
15. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008 [TBL] [Abstract][Full Text] [Related]
17. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455 [TBL] [Abstract][Full Text] [Related]
18. Enhanced osteogenic differentiation of mesenchymal stem cells on metal-organic framework based on copper, zinc, and imidazole coated poly-l-lactic acid nanofiber scaffolds. Telgerd MD; Sadeghinia M; Birhanu G; Daryasari MP; Zandi-Karimi A; Sadeghinia A; Akbarijavar H; Karami MH; Seyedjafari E J Biomed Mater Res A; 2019 Aug; 107(8):1841-1848. PubMed ID: 31033136 [TBL] [Abstract][Full Text] [Related]