These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 33091719)

  • 1. Structural plasticity on an accelerated analog neuromorphic hardware system.
    Billaudelle S; Cramer B; Petrovici MA; Schreiber K; Kappel D; Schemmel J; Meier K
    Neural Netw; 2021 Jan; 133():11-20. PubMed ID: 33091719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surrogate gradients for analog neuromorphic computing.
    Cramer B; Billaudelle S; Kanya S; Leibfried A; Grübl A; Karasenko V; Pehle C; Schreiber K; Stradmann Y; Weis J; Schemmel J; Zenke F
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MorphIC: A 65-nm 738k-Synapse/mm
    Frenkel C; Legat JD; Bol D
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):999-1010. PubMed ID: 31329562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System.
    Friedmann S; Schemmel J; Grubl A; Hartel A; Hock M; Meier K
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):128-142. PubMed ID: 28113678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 0.086-mm
    Frenkel C; Lefebvre M; Legat JD; Bol D
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):145-158. PubMed ID: 30418919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reward-based learning under hardware constraints-using a RISC processor embedded in a neuromorphic substrate.
    Friedmann S; Frémaux N; Schemmel J; Gerstner W; Meier K
    Front Neurosci; 2013; 7():160. PubMed ID: 24065877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors.
    Büchel J; Zendrikov D; Solinas S; Indiveri G; Muir DR
    Sci Rep; 2021 Dec; 11(1):23376. PubMed ID: 34862429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning probabilistic neural representations with randomly connected circuits.
    Maoz O; Tkačik G; Esteki MS; Kiani R; Schneidman E
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):25066-25073. PubMed ID: 32948691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstrating Advantages of Neuromorphic Computation: A Pilot Study.
    Wunderlich T; Kungl AF; Müller E; Hartel A; Stradmann Y; Aamir SA; Grübl A; Heimbrecht A; Schreiber K; Stöckel D; Pehle C; Billaudelle S; Kiene G; Mauch C; Schemmel J; Meier K; Petrovici MA
    Front Neurosci; 2019; 13():260. PubMed ID: 30971881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.
    Nishitani Y; Kaneko Y; Ueda M
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):2999-3008. PubMed ID: 26595417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields.
    Kreiser R; Aathmani D; Qiao N; Indiveri G; Sandamirskaya Y
    Front Neurosci; 2018; 12():717. PubMed ID: 30524218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors.
    Yue K; Liu Y; Lake RK; Parker AC
    Sci Adv; 2019 Apr; 5(4):eaau8170. PubMed ID: 31032402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Digital Neuromorphic Architecture for Large-Scale Biophysically Meaningful Neural Network With Multi-Compartment Neurons.
    Yang S; Deng B; Wang J; Li H; Lu M; Che Y; Wei X; Loparo KA
    IEEE Trans Neural Netw Learn Syst; 2020 Jan; 31(1):148-162. PubMed ID: 30892250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks.
    Zhang X; Lu J; Wang Z; Wang R; Wei J; Shi T; Dou C; Wu Z; Zhu J; Shang D; Xing G; Chan M; Liu Q; Liu M
    Sci Bull (Beijing); 2021 Aug; 66(16):1624-1633. PubMed ID: 36654296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.
    Zhang X; Foderaro G; Henriquez C; Ferrari S
    Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.