These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33091790)

  • 21. Biomechanical factors affecting individuals with lower limb amputations running using running-specific prostheses: A systematic review.
    Hadj-Moussa F; Ngan CC; Andrysek J
    Gait Posture; 2022 Feb; 92():83-95. PubMed ID: 34837772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?
    D'Andrea S; Wilhelm N; Silverman AK; Grabowski AM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3044-54. PubMed ID: 24781926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leg stiffness of sprinters using running-specific prostheses.
    McGowan CP; Grabowski AM; McDermott WJ; Herr HM; Kram R
    J R Soc Interface; 2012 Aug; 9(73):1975-82. PubMed ID: 22337629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stair ambulation in persons with transtibial amputation: an analysis of the Seattle LightFoot.
    Powers CM; Boyd LA; Torburn L; Perry J
    J Rehabil Res Dev; 1997 Jan; 34(1):9-18. PubMed ID: 9021622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of powered versus passive-elastic ankle foot prostheses on leg muscle activity during level, uphill and downhill walking.
    Colvin ZA; Montgomery JR; Grabowski AM
    R Soc Open Sci; 2022 Dec; 9(12):220651. PubMed ID: 36533194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Running mechanics and leg muscle activity patterns during early and late acceleration phases of repeated treadmill sprints in male recreational athletes.
    Girard O; Brocherie F; Morin JB; Millet GP; Hansen C
    Eur J Appl Physiol; 2020 Dec; 120(12):2785-2796. PubMed ID: 32980967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sprint kinematics of athletes with lower-limb amputations.
    Buckley JG
    Arch Phys Med Rehabil; 1999 May; 80(5):501-8. PubMed ID: 10326911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of lower-limb prosthetic alignment on muscle activity during sit-to-stand.
    Wagner KE; Nolasco LA; Morgenroth DC; Gates DH; Silverman AK
    J Electromyogr Kinesiol; 2020 Apr; 51():102398. PubMed ID: 32044564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees.
    Strike SC; Arcone D; Orendurff M
    Gait Posture; 2018 May; 62():327-332. PubMed ID: 29614465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trunk-pelvis motion, joint loads, and muscle forces during walking with a transtibial amputation.
    Yoder AJ; Petrella AJ; Silverman AK
    Gait Posture; 2015 Mar; 41(3):757-62. PubMed ID: 25748611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.
    Seyedali M; Czerniecki JM; Morgenroth DC; Hahn ME
    J Neuroeng Rehabil; 2012 May; 9():29. PubMed ID: 22640660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis.
    Oudenhoven LM; Boes JM; Hak L; Faber GS; Houdijk H
    J Biomech; 2017 Jan; 51():42-48. PubMed ID: 27923481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of powered ankle prostheses on muscle activity during walking.
    Kim J; Gardinier ES; Vempala V; Gates DH
    J Biomech; 2021 Jul; 124():110573. PubMed ID: 34153660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Athletes With Versus Without Leg Amputations: Different Biomechanics, Similar Running Economy.
    Beck ON; Grabowski AM
    Exerc Sport Sci Rev; 2019 Jan; 47(1):15-21. PubMed ID: 30334850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations.
    Taboga P; Kram R; Grabowski AM
    J Exp Biol; 2016 Mar; 219(Pt 6):851-8. PubMed ID: 26985053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spinal, pelvic, and hip movement asymmetries in people with lower-limb amputation: Systematic review.
    Devan H; Carman A; Hendrick P; Hale L; Ribeiro DC
    J Rehabil Res Dev; 2015; 52(1):1-19. PubMed ID: 26186283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations.
    Taboga P; Beck ON; Grabowski AM
    PLoS One; 2020; 15(2):e0229035. PubMed ID: 32078639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amputee Locomotion: Ground Reaction Forces During Submaximal Running With Running-Specific Prostheses.
    Baum BS; Hobara H; Kim YH; Shim JK
    J Appl Biomech; 2016 Jun; 32(3):287-94. PubMed ID: 26957365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.