BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33091865)

  • 1. How different freezing morphologies of impacting droplets form.
    Fang WZ; Zhu F; Tao WQ; Yang C
    J Colloid Interface Sci; 2021 Feb; 584():403-410. PubMed ID: 33091865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast-freezing kinetics inside a droplet impacting on a cold surface.
    Kant P; Koldeweij RBJ; Harth K; van Limbeek MAJ; Lohse D
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2788-2794. PubMed ID: 31980522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing of Nanofluid Droplets on Superhydrophobic Surfaces.
    Li X; Yu J; Hu D; Li Q; Chen X
    Langmuir; 2020 Nov; 36(43):13034-13040. PubMed ID: 33095587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold granular targets slow the bulk freezing of an impacting droplet.
    Zhao SC; Zhang HJ; Li Y
    Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2311930121. PubMed ID: 38175861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of surface morphology in impacting-freezing dynamics of supercooled droplets.
    Hosseini SR; Moghimi M; Nouri NM
    Sci Rep; 2024 Jun; 14(1):12585. PubMed ID: 38821975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the solidification of a supercooled liquid droplet lying on a surface.
    Tabakova S; Feuillebois F
    J Colloid Interface Sci; 2004 Apr; 272(1):225-34. PubMed ID: 14985041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of impact and spreading of molten nanosized gold droplets on solid surfaces.
    Shen D; Zou G; Liu L; Wu A; Duley WW; Zhou YN
    Appl Opt; 2018 Mar; 57(9):2080-2086. PubMed ID: 29603997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability.
    Hu A; Yuan Q; Guo K; Wang Z; Liu D
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrested Dynamics of Droplet Spreading on Ice.
    Lolla VY; Ahmadi SF; Park H; Fugaro AP; Boreyko JB
    Phys Rev Lett; 2022 Aug; 129(7):074502. PubMed ID: 36018702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study on Solidification Characteristics of Sessile Urine Droplets on a Horizontal Cold Plate Surface under Natural Convection.
    Dang Q; Song M; Dang C; Zhan T; Zhang L
    Langmuir; 2022 Jun; 38(25):7846-7857. PubMed ID: 35696680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imparting Icephobicity with Substrate Flexibility.
    Vasileiou T; Schutzius TM; Poulikakos D
    Langmuir; 2017 Jul; 33(27):6708-6718. PubMed ID: 28609620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study on the freezing process of water droplets for ice air jet technology.
    Jingru H; Jingbin L; Zhongwei H; Kang C; Haojun X
    Sci Rep; 2024 Feb; 14(1):3259. PubMed ID: 38332116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axisymmetric lattice Boltzmann model for simulating the freezing process of a sessile water droplet with volume change.
    Zhang C; Zhang H; Fang W; Zhao Y; Yang C
    Phys Rev E; 2020 Feb; 101(2-1):023314. PubMed ID: 32168660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous self-dislodging of freezing water droplets and the role of wettability.
    Graeber G; Schutzius TM; Eghlidi H; Poulikakos D
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical Radius of Supercooled Water Droplets: On the Transition toward Dendritic Freezing.
    Buttersack T; Bauerecker S
    J Phys Chem B; 2016 Jan; 120(3):504-12. PubMed ID: 26727582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of asymmetric cooling of sessile droplets on orientation of the freezing tip.
    Starostin A; Strelnikov V; Dombrovsky LA; Shoval S; Gendelman O; Bormashenko E
    J Colloid Interface Sci; 2022 Aug; 620():179-186. PubMed ID: 35428001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Salinity on the Mechanism of Surface Icing: Implication to the Disappearing Freezing Singularity.
    Singha SK; Das PK; Maiti B
    Langmuir; 2018 Jul; 34(30):9064-9071. PubMed ID: 29996655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between a rising bubble and a stationary droplet immersed in a liquid pool using a ternary conservative phase-field lattice Boltzmann method.
    Zhao C; Lee T
    Phys Rev E; 2023 Feb; 107(2-2):025308. PubMed ID: 36932517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spreading characteristics of nanofluid droplets impacting onto a solid surface.
    Murshed SM; de Castro CA
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3427-33. PubMed ID: 21776720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.