BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33091869)

  • 21. Benchmarking Cellulose Nanocrystals Part II: New Industrially Produced Materials.
    Delepierre G; Vanderfleet OM; Niinivaara E; Zakani B; Cranston ED
    Langmuir; 2021 Jul; 37(28):8393-8409. PubMed ID: 34250804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes.
    Yi P; Chen KL
    Langmuir; 2011 Apr; 27(7):3588-99. PubMed ID: 21355574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments.
    Liu Y; Hu Y; Yang C; Chen C; Huang W; Dang Z
    Water Res; 2019 Oct; 163():114870. PubMed ID: 31336206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Destabilization of Titania Nanosheet Suspensions by Inorganic Salts: Hofmeister Series and Schulze-Hardy Rule.
    Rouster P; Pavlovic M; Szilagyi I
    J Phys Chem B; 2017 Jul; 121(27):6749-6758. PubMed ID: 28616982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical Rationalization of Self-Assembly of Cellulose Nanocrystals: Effect of Surface Modifications and Counterions.
    Garg M; Linares M; Zozoulenko I
    Biomacromolecules; 2020 Aug; 21(8):3069-3080. PubMed ID: 32619090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of adsorption of ionic liquid constituents on the stability of layered double hydroxide colloids.
    Takács D; Katana B; Szerlauth A; Sebők D; Tomšič M; Szilágyi I
    Soft Matter; 2021 Oct; 17(40):9116-9124. PubMed ID: 34569591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering.
    Cherhal F; Cousin F; Capron I
    Langmuir; 2015 May; 31(20):5596-602. PubMed ID: 25918887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions.
    Shih YH; Liu WS; Su YF
    Environ Toxicol Chem; 2012 Aug; 31(8):1693-8. PubMed ID: 22639241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salt-Responsive Phenol Formaldehyde Resin: Changes of Interface Energy on the Aggregation Process.
    Zhao D; Li Z; Yang H; Yang W; Tian Y; Tan L; Chen N; Feng H
    Langmuir; 2023 Jan; 39(1):395-402. PubMed ID: 36579637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles.
    El Badawy AM; Scheckel KG; Suidan M; Tolaymat T
    Sci Total Environ; 2012 Jul; 429():325-31. PubMed ID: 22578844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colloidal Stability of Graphene Oxide: Aggregation in Two Dimensions.
    Gudarzi MM
    Langmuir; 2016 May; 32(20):5058-68. PubMed ID: 27143102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems.
    Zhong L; Fu S; Peng X; Zhan H; Sun R
    Carbohydr Polym; 2012 Sep; 90(1):644-9. PubMed ID: 24751088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.
    Chen KL; Mylon SE; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(5):1516-23. PubMed ID: 16568765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Stability of C60 nanoparticles in aquatic systems].
    Fang H; Shen BB; Jing J; Lu JL; Wang Y
    Huan Jing Ke Xue; 2014 Apr; 35(4):1337-42. PubMed ID: 24946585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents.
    Abitbol T; Palermo A; Moran-Mirabal JM; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3278-84. PubMed ID: 23952644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific Ion Effects on the Colloidal Stability of Layered Double Hydroxide Single-layer Nanosheets.
    Yu W; Du N; Gu Y; Yan J; Hou W
    Langmuir; 2020 Jun; 36(23):6557-6568. PubMed ID: 32466650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.
    Fox DM; Rodriguez RS; Devilbiss MN; Woodcock J; Davis CS; Sinko R; Keten S; Gilman JW
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27270-27281. PubMed ID: 27626824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aggregation and charging of colloidal silica particles: effect of particle size.
    Kobayashi M; Juillerat F; Galletto P; Bowen P; Borkovec M
    Langmuir; 2005 Jun; 21(13):5761-9. PubMed ID: 15952820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charging and aggregation of latex particles in aqueous solutions of ionic liquids: towards an extended Hofmeister series.
    Oncsik T; Desert A; Trefalt G; Borkovec M; Szilagyi I
    Phys Chem Chem Phys; 2016 Mar; 18(10):7511-20. PubMed ID: 26902948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggregation Behavior of Inorganic 2D Nanomaterials Beyond Graphene: Insights from Molecular Modeling and Modified DLVO Theory.
    Mohona TM; Gupta A; Masud A; Chien SC; Lin LC; Nalam PC; Aich N
    Environ Sci Technol; 2019 Apr; 53(8):4161-4172. PubMed ID: 30884220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.