These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33091891)

  • 1. A bioelectric neural interface towards intuitive prosthetic control for amputees.
    Nguyen AT; Xu J; Jiang M; Luu DK; Wu T; Tam WK; Zhao W; Drealan MW; Overstreet CK; Zhao Q; Cheng J; Keefer EW; Yang Z
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33091891
    [No Abstract]   [Full Text] [Related]  

  • 2. Artificial Intelligence Enables Real-Time and Intuitive Control of Prostheses via Nerve Interface.
    Luu DK; Nguyen AT; Jiang M; Drealan MW; Xu J; Wu T; Tam WK; Zhao W; Lim BZH; Overstreet CK; Zhao Q; Cheng J; Keefer EW; Yang Z
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3051-3063. PubMed ID: 35302937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves.
    Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA
    J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves.
    Davis TS; Wark HA; Hutchinson DT; Warren DJ; O'Neill K; Scheinblum T; Clark GA; Normann RA; Greger B
    J Neural Eng; 2016 Jun; 13(3):036001. PubMed ID: 27001946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A portable, self-contained neuroprosthetic hand with deep learning-based finger control.
    Nguyen AT; Drealan MW; Khue Luu D; Jiang M; Xu J; Cheng J; Zhao Q; Keefer EW; Yang Z
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34571503
    [No Abstract]   [Full Text] [Related]  

  • 6. Fascicle-Specific Targeting of Longitudinal Intrafascicular Electrodes for Motor and Sensory Restoration in Upper-Limb Amputees.
    Cheng J; Yang Z; Overstreet CK; Keefer E
    Hand Clin; 2021 Aug; 37(3):401-414. PubMed ID: 34253313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational approaches to decode grasping force and velocity level in upper-limb amputee from intraneural peripheral signals.
    Cracchiolo M; Panarese A; Valle G; Strauss I; Granata G; Iorio RD; Stieglitz T; Rossini PM; Mazzoni A; Micera S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33725672
    [No Abstract]   [Full Text] [Related]  

  • 8. Stable, simultaneous and proportional 4-DoF prosthetic hand control via synergy-inspired linear interpolation: a case series.
    Lukyanenko P; Dewald HA; Lambrecht J; Kirsch RF; Tyler DJ; Williams MR
    J Neuroeng Rehabil; 2021 Mar; 18(1):50. PubMed ID: 33736656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: stimulation.
    Coker RA; Zellmer ER; Moran DW
    J Neural Eng; 2019 Apr; 16(2):026002. PubMed ID: 30524078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part A: recording.
    Coker RA; Zellmer ER; Moran DW
    J Neural Eng; 2019 Apr; 16(2):026001. PubMed ID: 30524005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intuitive neuromyoelectric control of a dexterous bionic arm using a modified Kalman filter.
    George JA; Davis TS; Brinton MR; Clark GA
    J Neurosci Methods; 2020 Jan; 330():108462. PubMed ID: 31711883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding of grasping tasks from intraneural recordings in trans-radial amputee.
    Cracchiolo M; Valle G; Petrini F; Strauss I; Granata G; Stieglitz T; Rossini PM; Raspopovic S; Mazzoni A; Micera S
    J Neural Eng; 2020 Apr; 17(2):026034. PubMed ID: 32207409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces.
    Micera S; Rossini PM; Rigosa J; Citi L; Carpaneto J; Raspopovic S; Tombini M; Cipriani C; Assenza G; Carrozza MC; Hoffmann KP; Yoshida K; Navarro X; Dario P
    J Neuroeng Rehabil; 2011 Sep; 8():53. PubMed ID: 21892926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs.
    Ortiz-Catalan M; Håkansson B; Brånemark R
    Sci Transl Med; 2014 Oct; 6(257):257re6. PubMed ID: 25298322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved hand prostheses control for transradial amputees based on hybrid of voice recognition and electromyography.
    Alkhafaf OS; Wali MK; Al-Timemy AH
    Int J Artif Organs; 2021 Jul; 44(7):509-517. PubMed ID: 33287634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.
    Amsuess S; Goebel P; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling.
    Sartori M; Durandau G; Došen S; Farina D
    J Neural Eng; 2018 Dec; 15(6):066026. PubMed ID: 30229745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosignal-based transferable attention Bi-ConvGRU deep network for hand-gesture recognition towards online upper-limb prosthesis control.
    Xie B; Meng J; Li B; Harland A
    Comput Methods Programs Biomed; 2022 Sep; 224():106999. PubMed ID: 35841852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.