BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33092085)

  • 1. A Systematic Evaluation of High-Throughput Sequencing Approaches to Identify Low-Frequency Single Nucleotide Variants in Viral Populations.
    King DJ; Freimanis G; Lasecka-Dykes L; Asfor A; Ribeca P; Waters R; King DP; Laing E
    Viruses; 2020 Oct; 12(10):. PubMed ID: 33092085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles.
    Van der Borght K; Thys K; Wetzels Y; Clement L; Verbist B; Reumers J; van Vlijmen H; Aerssens J
    BMC Bioinformatics; 2015 Nov; 16():379. PubMed ID: 26554718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of Intrahost Viral Diversity Are Extremely Sensitive to Systematic Errors in Variant Calling.
    McCrone JT; Lauring AS
    J Virol; 2016 Aug; 90(15):6884-95. PubMed ID: 27194763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized quantification of intra-host viral diversity in SARS-CoV-2 and influenza virus sequence data.
    Roder AE; Johnson KEE; Knoll M; Khalfan M; Wang B; Schultz-Cherry S; Banakis S; Kreitman A; Mederos C; Youn JH; Mercado R; Wang W; Chung M; Ruchnewitz D; Samanovic MI; Mulligan MJ; Lässig M; Luksza M; Das S; Gresham D; Ghedin E
    mBio; 2023 Aug; 14(4):e0104623. PubMed ID: 37389439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate single nucleotide variant detection in viral populations by combining probabilistic clustering with a statistical test of strand bias.
    McElroy K; Zagordi O; Bull R; Luciani F; Beerenwinkel N
    BMC Genomics; 2013 Jul; 14():501. PubMed ID: 23879730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler.
    Shepard SS; Meno S; Bahl J; Wilson MM; Barnes J; Neuhaus E
    BMC Genomics; 2016 Sep; 17(1):708. PubMed ID: 27595578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole genome sequencing of 35 individuals provides insights into the genetic architecture of Korean population.
    Zhang W; Meehan J; Su Z; Ng HW; Shu M; Luo H; Ge W; Perkins R; Tong W; Hong H
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S6. PubMed ID: 25350283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ViVaMBC: estimating viral sequence variation in complex populations from illumina deep-sequencing data using model-based clustering.
    Verbist B; Clement L; Reumers J; Thys K; Vapirev A; Talloen W; Wetzels Y; Meys J; Aerssens J; Bijnens L; Thas O
    BMC Bioinformatics; 2015 Feb; 16():59. PubMed ID: 25887734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SECEDO: SNV-based subclone detection using ultra-low coverage single-cell DNA sequencing.
    Rozhoňová H; Danciu D; Stark S; Rätsch G; Kahles A; Lehmann KV
    Bioinformatics; 2022 Sep; 38(18):4293-4300. PubMed ID: 35900151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data.
    Orton RJ; Wright CF; Morelli MJ; King DJ; Paton DJ; King DP; Haydon DT
    BMC Genomics; 2015 Mar; 16(1):229. PubMed ID: 25886445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies.
    Lu IN; Muller CP; He FQ
    Virus Res; 2020 Jul; 283():197963. PubMed ID: 32278821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of single nucleotide variants using position-specific error estimation in deep sequencing data.
    Kleftogiannis D; Punta M; Jayaram A; Sandhu S; Wong SQ; Gasi Tandefelt D; Conteduca V; Wetterskog D; Attard G; Lise S
    BMC Med Genomics; 2019 Aug; 12(1):115. PubMed ID: 31375105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical modeling for sensitive detection of low-frequency single nucleotide variants.
    Hao Y; Zhang P; Xuei X; Nakshatri H; Edenberg HJ; Li L; Liu Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):514. PubMed ID: 27556804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the genetic diversity of influenza A viruses using next-generation DNA sequencing.
    Van den Hoecke S; Verhelst J; Vuylsteke M; Saelens X
    BMC Genomics; 2015 Feb; 16(1):79. PubMed ID: 25758772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and correction of systematic error in high-throughput sequence data.
    Meacham F; Boffelli D; Dhahbi J; Martin DI; Singer M; Pachter L
    BMC Bioinformatics; 2011 Nov; 12():451. PubMed ID: 22099972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of multiplex PCR sequencing assay of SIV.
    Moriarty RV; Fesser N; Sutton MS; Venturi V; Davenport MP; Schlub T; O'Connor SL
    Virol J; 2021 Jan; 18(1):21. PubMed ID: 33451356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.
    Morse AM; Calabro KR; Fear JM; Bloom DC; McIntyre LM
    Viruses; 2017 Aug; 9(8):. PubMed ID: 28812996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNV identification from single-cell RNA sequencing data.
    Schnepp PM; Chen M; Keller ET; Zhou X
    Hum Mol Genet; 2019 Nov; 28(21):3569-3583. PubMed ID: 31504520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A next generation sequencing-based method to study the intra-host genetic diversity of norovirus in patients with acute and chronic infection.
    Hasing ME; Hazes B; Lee BE; Preiksaitis JK; Pang XL
    BMC Genomics; 2016 Jul; 17():480. PubMed ID: 27363999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing.
    Hollegaard MV; Grauholm J; Nielsen R; Grove J; Mandrup S; Hougaard DM
    Mol Genet Metab; 2013; 110(1-2):65-72. PubMed ID: 23830478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.