These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Triterpenoids and α-glucosidase inhibitory constituents from Salacia hainanensis. Yu MH; Shi ZF; Yu BW; Pi EH; Wang HY; Hou AJ; Lei C Fitoterapia; 2014 Oct; 98():143-8. PubMed ID: 25073097 [TBL] [Abstract][Full Text] [Related]
9. Natural Triterpenoids Isolated from Akebia trifoliata Stem Explants Exert a Hypoglycemic Effect via α-Glucosidase Inhibition and Glucose Uptake Stimulation in Insulin-Resistant HepG2 Cells. Bian G; Yang J; Elango J; Wu W; Bao B; Bao C Chem Biodivers; 2021 May; 18(5):e2001030. PubMed ID: 33779055 [TBL] [Abstract][Full Text] [Related]
10. A new feruloylfriedelinol from the stems of Limtragool OA; Pitchuanchom S; Saensouk S; Poopasit K; Kanokmedhakul K; Kanokmedhakul S Nat Prod Res; 2024 Sep; 38(18):3269-3274. PubMed ID: 37287380 [TBL] [Abstract][Full Text] [Related]
11. Exploring the inhibitory action of betulinic acid on key digestive enzymes linked to diabetes via in vitro and computational models: approaches to anti-diabetic mechanisms. Salau VF; Erukainure OL; Aljoundi A; Akintemi EO; Elamin G; Odewole OA SAR QSAR Environ Res; 2024 May; 35(5):411-432. PubMed ID: 38764437 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxic Potential of a-Azepano- and 3-Amino-3,4-SeCo-Triterpenoids. Kazakova O; Smirnova I; Tret'yakova E; Csuk R; Hoenke S; Fischer L Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567783 [TBL] [Abstract][Full Text] [Related]
13. α-Glucosidase inhibitory triterpenoids from Euonymus fortunei. Zhao K; Sun S; Wang H; Wang L; Qin G; Fan J; Guo M; Wang W Bioorg Chem; 2021 Jun; 111():104980. PubMed ID: 34004587 [TBL] [Abstract][Full Text] [Related]
14. Betulinic acid derivatives: a new class of α-glucosidase inhibitors and LPS-stimulated nitric oxide production inhibition on mouse macrophage RAW 264.7 cells. Gundoju N; Bokam R; Yalavarthi NR; Azad R; Ponnapalli MG Nat Prod Res; 2019 Sep; 33(18):2618-2622. PubMed ID: 29683341 [TBL] [Abstract][Full Text] [Related]
15. Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase. Chen XQ; Zhao J; Chen LX; Wang SF; Wang Y; Li SP Phytochemistry; 2018 May; 149():103-115. PubMed ID: 29490285 [TBL] [Abstract][Full Text] [Related]
16. Inhibitory effect of triterpenoids from the mushroom Inonotus obliquus against α-glucosidase and their interaction: Inhibition kinetics and molecular stimulations. Chen SD; Yong TQ; Xiao C; Gao X; Xie YZ; Hu HP; Li XM; Chen DL; Pan HH; Wu QP Bioorg Chem; 2021 Oct; 115():105276. PubMed ID: 34426146 [TBL] [Abstract][Full Text] [Related]
17. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. Chung PY Phytomedicine; 2020 Jul; 73():152933. PubMed ID: 31103429 [TBL] [Abstract][Full Text] [Related]
18. A new 26-norlanostane from Tri MD; Phat NT; Trung NT; Phan CD; Minh PN; Chi MT; Nguyen TP; Dang CH; Hong Truong L; Pham NKT; Mai TTN; Duong TH J Asian Nat Prod Res; 2022 Feb; 24(2):196-202. PubMed ID: 33876656 [TBL] [Abstract][Full Text] [Related]
19. Pentacylic triterpenes from Elsbaey M; Mwakalukwa R; Shimizu K; Miyamoto T Nat Prod Res; 2021 May; 35(9):1436-1444. PubMed ID: 31434504 [TBL] [Abstract][Full Text] [Related]
20. Semi-synthesis of C28-modified triterpene acid derivatives from maslinic acid or corosolic acid as potential α-glucosidase inhibitors. Liu X; Zang X; Yin X; Yang W; Huang J; Huang J; Yu C; Ke C; Hong Y Bioorg Chem; 2020 Apr; 97():103694. PubMed ID: 32120080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]