These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33092361)

  • 1. Stochastic scattering theory for excitation-induced dephasing: Comparison to the Anderson-Kubo lineshape.
    Li H; Srimath Kandada AR; Silva C; Bittner ER
    J Chem Phys; 2020 Oct; 153(15):154115. PubMed ID: 33092361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Optical Signatures of Stochastic Processes in Many-Body Exciton Scattering.
    Li H; Shah SA; Kandada ARS; Silva C; Piryatinski A; Bittner ER
    Annu Rev Phys Chem; 2023 Apr; 74():467-492. PubMed ID: 36854178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic scattering theory for excitation-induced dephasing: Time-dependent nonlinear coherent exciton lineshapes.
    Srimath Kandada AR; Li H; Thouin F; Bittner ER; Silva C
    J Chem Phys; 2020 Oct; 153(16):164706. PubMed ID: 33138398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton-Scattering-Induced Dephasing in Two-Dimensional Semiconductors.
    Katsch F; Selig M; Knorr A
    Phys Rev Lett; 2020 Jun; 124(25):257402. PubMed ID: 32639791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic exciton-scattering theory of optical line shapes: Renormalized many-body contributions.
    Li H; Shah SA; Bittner ER; Piryatinski A; Silva-Acuña C
    J Chem Phys; 2022 Aug; 157(5):054103. PubMed ID: 35933213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
    Dinpajooh M; Matyushov DV
    J Phys Chem B; 2014 Jul; 118(28):7925-36. PubMed ID: 24707917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations and stochastic processes in one-dimensional many-body quantum systems.
    Stimming HP; Mauser NJ; Schmiedmayer J; Mazets IE
    Phys Rev Lett; 2010 Jul; 105(1):015301. PubMed ID: 20867458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic dynamic models and Chebyshev splines.
    Fan R; Zhu B; Wang Y
    Can J Stat; 2014 Dec; 42(4):610-634. PubMed ID: 26045632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitons and Polarons in Organic Materials.
    Ghosh R; Spano FC
    Acc Chem Res; 2020 Oct; 53(10):2201-2211. PubMed ID: 33035054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic behaviors of a stochastic virus infection model with Beddington-DeAngelis incidence function, eclipse-stage and Ornstein-Uhlenbeck process.
    Liu Y; Wang Y; Jiang D
    Math Biosci; 2024 Mar; 369():109154. PubMed ID: 38295988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian motion in non-equilibrium systems and the Ornstein-Uhlenbeck stochastic process.
    Donado F; Moctezuma RE; López-Flores L; Medina-Noyola M; Arauz-Lara JL
    Sci Rep; 2017 Oct; 7(1):12614. PubMed ID: 28974759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast vibrationally-induced dephasing of electronic excitations in PbSe quantum dots.
    Kamisaka H; Kilina SV; Yamashita K; Prezhdo OV
    Nano Lett; 2006 Oct; 6(10):2295-300. PubMed ID: 17034100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dephasing and dissipation in a source-drain model of light-harvesting systems.
    Xiong SJ; Chen L; Zhao Y
    Chemphyschem; 2014 Sep; 15(13):2859-70. PubMed ID: 25044624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of nonlinear and nonstationary stochasticity for atomic ensembles.
    Qin B; Wang Z; Wang R; Li F; Liu Z; Fang C
    ISA Trans; 2023 Dec; 143():557-571. PubMed ID: 37806820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic Band-Structure Computation for Investigating Coulomb Dephasing and Impurity Scattering Rates of Electrons in Graphene.
    Do TN; Huang D; Shih PH; Lin H; Gumbs G
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34062735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of spontaneous emission of quantum dots in the linear regime.
    Zora A; Simserides C; Triberis GP
    J Phys Condens Matter; 2007 Oct; 19(40):406201. PubMed ID: 22049100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Bayesian inference of the multivariate Ornstein-Uhlenbeck process.
    Singh R; Ghosh D; Adhikari R
    Phys Rev E; 2018 Jul; 98(1-1):012136. PubMed ID: 30110802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation energy transfer in a non-markovian dynamical disordered environment: localization, narrowing, and transfer efficiency.
    Chen X; Silbey RJ
    J Phys Chem B; 2011 May; 115(18):5499-509. PubMed ID: 21384851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations.
    Hsieh CY; Cao J
    J Chem Phys; 2018 Jan; 148(1):014103. PubMed ID: 29306296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.