These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33092389)

  • 1. Non-adiabatic effects of nuclear motion in quantum transport of electrons: A self-consistent Keldysh-Langevin study.
    Kershaw VF; Kosov DS
    J Chem Phys; 2020 Oct; 153(15):154101. PubMed ID: 33092389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-equilibrium Green's function theory for non-adiabatic effects in quantum transport: Inclusion of electron-electron interactions.
    Kershaw VF; Kosov DS
    J Chem Phys; 2019 Feb; 150(7):074101. PubMed ID: 30795666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-adiabatic corrections to electric current in molecular junctions due to nuclear motion at the molecule-electrode interfaces.
    Kershaw VF; Kosov DS
    J Chem Phys; 2018 Jul; 149(4):044121. PubMed ID: 30068154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport.
    Kershaw VF; Kosov DS
    J Chem Phys; 2017 Dec; 147(22):224109. PubMed ID: 29246074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for dynamical solvent control of molecular junction electronic properties.
    Gelin MF; Kosov DS
    J Chem Phys; 2021 Jan; 154(4):044107. PubMed ID: 33514101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-passage time theory of activated rate chemical processes in electronic molecular junctions.
    Preston RJ; Gelin MF; Kosov DS
    J Chem Phys; 2021 Mar; 154(11):114108. PubMed ID: 33752339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.
    Benabbas A; Salna B; Sage JT; Champion PM
    J Chem Phys; 2015 Mar; 142(11):114101. PubMed ID: 25796225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current-induced forces in mesoscopic systems: A scattering-matrix approach.
    Bode N; Kusminskiy SV; Egger R; von Oppen F
    Beilstein J Nanotechnol; 2012; 3():144-62. PubMed ID: 22428105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport properties of an Aharonov-Bohm ring with strong interdot Coulomb interaction.
    Liu YS; Chen H; Yang XF
    J Phys Condens Matter; 2007 Jun; 19(24):246201. PubMed ID: 21694045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations.
    Nocera A; Perroni CA; Ramaglia VM; Cataudella V
    Beilstein J Nanotechnol; 2016; 7():439-64. PubMed ID: 27335736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic transport in molecular junctions: The generalized Kadanoff-Baym ansatz with initial contact and correlations.
    Tuovinen R; van Leeuwen R; Perfetto E; Stefanucci G
    J Chem Phys; 2021 Mar; 154(9):094104. PubMed ID: 33685185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adiabatic charge and spin pumping through interacting quantum dots.
    Deus F; Hernández AR; Continentino MA
    J Phys Condens Matter; 2012 Sep; 24(35):356001. PubMed ID: 22885672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kramers problem for nonequilibrium current-induced chemical reactions.
    Dzhioev AA; Kosov DS
    J Chem Phys; 2011 Aug; 135(7):074701. PubMed ID: 21861578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical equations for time-ordered Green's functions: from the Keldysh time-loop contour to equilibrium at finite and zero temperature.
    Ness H; Dash LK
    J Phys Condens Matter; 2012 Dec; 24(50):505601. PubMed ID: 23165158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics.
    Albert J; Kaiser D; Engel V
    J Chem Phys; 2016 May; 144(17):171103. PubMed ID: 27155617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-equilibrium electronic transport through a quantum dot with strong Coulomb repulsion in the presence of a magnetic field.
    Zhuravel D; Anchishkin DV; Hayn R; Lombardo P; Schäfer S
    J Phys Condens Matter; 2020 Apr; 32(16):165601. PubMed ID: 31778994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wigner function approach to the quantum Brownian motion of a particle in a potential.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory effects and nonequilibrium transport in open many-particle quantum systems.
    Knezevic I; Ferry DK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066122. PubMed ID: 16241319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-adiabatic quantum dynamics without potential energy surfaces based on second-quantized electrons: Application within the framework of the MCTDH method.
    Sasmal S; Vendrell O
    J Chem Phys; 2020 Oct; 153(15):154110. PubMed ID: 33092359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.