BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33092526)

  • 1. NIMBus: a negative binomial regression based Integrative Method for mutation Burden Analysis.
    Zhang J; Liu J; McGillivray P; Yi C; Lochovsky L; Lee D; Gerstein M
    BMC Bioinformatics; 2020 Oct; 21(1):474. PubMed ID: 33092526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations.
    Lochovsky L; Zhang J; Fu Y; Khurana E; Gerstein M
    Nucleic Acids Res; 2015 Sep; 43(17):8123-34. PubMed ID: 26304545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined burden and functional impact tests for cancer driver discovery using DriverPower.
    Shuai S; ; Gallinger S; Stein LD;
    Nat Commun; 2020 Feb; 11(1):734. PubMed ID: 32024818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes.
    Perera D; Poulos RC; Shah A; Beck D; Pimanda JE; Wong JW
    Nature; 2016 Apr; 532(7598):259-63. PubMed ID: 27075100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pan-cancer analysis of whole genomes.
    ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium
    Nature; 2020 Feb; 578(7793):82-93. PubMed ID: 32025007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MutEnricher: a flexible toolset for somatic mutation enrichment analysis of tumor whole genomes.
    Soltis AR; Dalgard CL; Pollard HB; Wilkerson MD
    BMC Bioinformatics; 2020 Jul; 21(1):338. PubMed ID: 32736515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.
    Bertl J; Guo Q; Juul M; Besenbacher S; Nielsen MM; Hornshøj H; Pedersen JS; Hobolth A
    BMC Bioinformatics; 2018 Apr; 19(1):147. PubMed ID: 29673314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MOAT: efficient detection of highly mutated regions with the Mutations Overburdening Annotations Tool.
    Lochovsky L; Zhang J; Gerstein M
    Bioinformatics; 2018 Mar; 34(6):1031-1033. PubMed ID: 29121169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning window analysis of non-coding regions within normal-tumor whole-genome sequence samples.
    Torcivia JP; Mazumder R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32940334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.
    Lee CA; Abd-Rabbo D; Reimand J
    Genome Biol; 2021 May; 22(1):133. PubMed ID: 33941236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer regulatory variation.
    Hennessey RC; Brown KM
    Curr Opin Genet Dev; 2021 Feb; 66():41-49. PubMed ID: 33422949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide mapping of somatic mutation rates uncovers drivers of cancer.
    Sherman MA; Yaari AU; Priebe O; Dietlein F; Loh PR; Berger B
    Nat Biotechnol; 2022 Nov; 40(11):1634-1643. PubMed ID: 35726091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent somatic mutations in regulatory regions of human cancer genomes.
    Melton C; Reuter JA; Spacek DV; Snyder M
    Nat Genet; 2015 Jul; 47(7):710-6. PubMed ID: 26053494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candidate Cancer Driver Mutations in Distal Regulatory Elements and Long-Range Chromatin Interaction Networks.
    Zhu H; Uusküla-Reimand L; Isaev K; Wadi L; Alizada A; Shuai S; Huang V; Aduluso-Nwaobasi D; Paczkowska M; Abd-Rabbo D; Ocsenas O; Liang M; Thompson JD; Li Y; Ruan L; Krassowski M; Dzneladze I; Simpson JT; Lupien M; Stein LD; Boutros PC; Wilson MD; Reimand J
    Mol Cell; 2020 Mar; 77(6):1307-1321.e10. PubMed ID: 31954095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of potential causative mutations in human coding and noncoding genome with the interactive software BasePlayer.
    Katainen R; Donner I; Cajuso T; Kaasinen E; Palin K; Mäkinen V; Aaltonen LA; Pitkänen E
    Nat Protoc; 2018 Nov; 13(11):2580-2600. PubMed ID: 30323186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pan-cancer landscape of somatic mutations in non-unique regions of the human genome.
    Tarabichi M; Demeulemeester J; Verfaillie A; Flanagan AM; Van Loo P; Konopka T
    Nat Biotechnol; 2021 Dec; 39(12):1589-1596. PubMed ID: 34282324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations.
    Mularoni L; Sabarinathan R; Deu-Pons J; Gonzalez-Perez A; López-Bigas N
    Genome Biol; 2016 Jun; 17(1):128. PubMed ID: 27311963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome.
    Wang J; Dayem Ullah AZ; Chelala C
    Nucleic Acids Res; 2018 May; 46(8):e47. PubMed ID: 29390075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian inference of negative and positive selection in human cancers.
    Weghorn D; Sunyaev S
    Nat Genet; 2017 Dec; 49(12):1785-1788. PubMed ID: 29106416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.