BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33092650)

  • 1. Complementary NAD
    Frederick DW; McDougal AV; Semenas M; Vappiani J; Nuzzo A; Ulrich JC; Becherer JD; Preugschat F; Stewart EL; Sévin DC; Kramer HF
    Skelet Muscle; 2020 Oct; 10(1):30. PubMed ID: 33092650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutraceutical and pharmaceutical cocktails did not improve muscle function or reduce histological damage in D2-mdx mice.
    Spaulding HR; Quindry T; Hammer K; Quindry JC; Selsby JT
    J Appl Physiol (1985); 2019 Oct; 127(4):1058-1066. PubMed ID: 31295065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine oxidase is hyper-active in Duchenne muscular dystrophy.
    Lindsay A; McCourt PM; Karachunski P; Lowe DA; Ervasti JM
    Free Radic Biol Med; 2018 Dec; 129():364-371. PubMed ID: 30312761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention of stress susceptibility in the mdx mouse model of Duchenne muscular dystrophy after PGC-1α overexpression or ablation of IDO1 or CD38.
    Johnson EE; Southern WM; Doud B; Steiger B; Razzoli M; Bartolomucci A; Ervasti JM
    Hum Mol Genet; 2024 Mar; 33(7):594-611. PubMed ID: 38181046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD38-NADase is a new major contributor to Duchenne muscular dystrophic phenotype.
    de Zélicourt A; Fayssoil A; Dakouane-Giudicelli M; De Jesus I; Karoui A; Zarrouki F; Lefebvre F; Mansart A; Launay JM; Piquereau J; Tarragó MG; Bonay M; Forand A; Moog S; Piétri-Rouxel F; Brisebard E; Chini CCS; Kashyap S; Fogarty MJ; Sieck GC; Mericskay M; Chini EN; Gomez AM; Cancela JM; de la Porte S
    EMBO Mol Med; 2022 May; 14(5):e12860. PubMed ID: 35298089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD
    Roboon J; Hattori T; Ishii H; Takarada-Iemata M; Nguyen DT; Heer CD; O'Meally D; Brenner C; Yamamoto Y; Okamoto H; Higashida H; Hori O
    J Neurochem; 2021 Jul; 158(2):311-327. PubMed ID: 33871064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical factors tune the sensitivity of mdx muscle to eccentric strength loss and its protection by antioxidant and calcium modulators.
    Lindsay A; Baumann CW; Rebbeck RT; Yuen SL; Southern WM; Hodges JS; Cornea RL; Thomas DD; Ervasti JM; Lowe DA
    Skelet Muscle; 2020 Feb; 10(1):3. PubMed ID: 32007101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neopterin/7,8-dihydroneopterin is elevated in Duchenne muscular dystrophy patients and protects mdx skeletal muscle function.
    Lindsay A; Schmiechen A; Chamberlain CM; Ervasti JM; Lowe DA
    Exp Physiol; 2018 Jul; 103(7):995-1009. PubMed ID: 29791760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle.
    Lindsay A; Larson AA; Verma M; Ervasti JM; Lowe DA
    J Appl Physiol (1985); 2019 Feb; 126(2):363-375. PubMed ID: 30571283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle.
    Blaauw B; Mammucari C; Toniolo L; Agatea L; Abraham R; Sandri M; Reggiani C; Schiaffino S
    Hum Mol Genet; 2008 Dec; 17(23):3686-96. PubMed ID: 18753145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dystrophin-negative slow-twitch soleus muscles are not susceptible to eccentric contraction induced injury over the lifespan of the
    Kiriaev L; Kueh S; Morley JW; Houweling PJ; Chan S; North KN; Head SI
    Am J Physiol Cell Physiol; 2021 Oct; 321(4):C704-C720. PubMed ID: 34432537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-dystrophin and follistatin co-delivery restores muscle function in aged DMD model.
    Rodino-Klapac LR; Janssen PM; Shontz KM; Canan B; Montgomery CL; Griffin D; Heller K; Schmelzer L; Handy C; Clark KR; Sahenk Z; Mendell JR; Kaspar BK
    Hum Mol Genet; 2013 Dec; 22(24):4929-37. PubMed ID: 23863459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy.
    Marrocco V; Fiore P; Benedetti A; Pisu S; Rizzuto E; Musarò A; Madaro L; Lozanoska-Ochser B; Bouché M
    EBioMedicine; 2017 Feb; 16():150-161. PubMed ID: 28089792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity.
    Hardee JP; Martins KJB; Miotto PM; Ryall JG; Gehrig SM; Reljic B; Naim T; Chung JD; Trieu J; Swiderski K; Philp AM; Philp A; Watt MJ; Stroud DA; Koopman R; Steinberg GR; Lynch GS
    Mol Metab; 2021 Mar; 45():101157. PubMed ID: 33359740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Protective Effect of Human Dystrophin Expressing Chimeric (DEC) Cell Therapy on Amelioration of Function of Cardiac, Respiratory and Skeletal Muscles in Duchenne Muscular Dystrophy.
    Siemionow M; Langa P; Brodowska S; Kozlowska K; Zalants K; Budzynska K; Heydemann A
    Stem Cell Rev Rep; 2022 Dec; 18(8):2872-2892. PubMed ID: 35590083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical impedance myography detects dystrophin-related muscle changes in mdx mice.
    Hiyoshi T; Zhao F; Baba R; Hirakawa T; Kuboki R; Suzuki K; Tomimatsu Y; O'Donnell P; Han S; Zach N; Nakashima M
    Skelet Muscle; 2023 Nov; 13(1):19. PubMed ID: 37980539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle specific kinase protects dystrophic mdx mouse muscles from eccentric contraction-induced loss of force-producing capacity.
    Trajanovska S; Ban J; Huang J; Gregorevic P; Morsch M; Allen DG; Phillips WD
    J Physiol; 2019 Sep; 597(18):4831-4850. PubMed ID: 31340406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TAT-μUtrophin mitigates the pathophysiology of dystrophin and utrophin double-knockout mice.
    Call JA; Ervasti JM; Lowe DA
    J Appl Physiol (1985); 2011 Jul; 111(1):200-5. PubMed ID: 21565990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dystrophinopathy-associated dysfunction of Krebs cycle metabolism.
    Lindsay A; Chamberlain CM; Witthuhn BA; Lowe DA; Ervasti JM
    Hum Mol Genet; 2019 Mar; 28(6):942-951. PubMed ID: 30476171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.