These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33092846)

  • 1. Impacts of cryogenic sampling processes on iron mineral coatings in contaminated sediment.
    Hua H; Yin X; Renno MI; Sale TC; Landis R; Dyer JA; Axe L
    Sci Total Environ; 2021 Apr; 765():142796. PubMed ID: 33092846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of reactive iron mineral coatings in natural attenuation in redox transition zones preserved from a site with historical contamination.
    Hua H; Yin X; Fennell D; Dyer JA; Landis R; Morgan SA; Axe L
    J Hazard Mater; 2021 Oct; 420():126600. PubMed ID: 34271444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greigite: a true intermediate on the polysulfide pathway to pyrite.
    Hunger S; Benning LG
    Geochem Trans; 2007 Mar; 8():1. PubMed ID: 17376247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of selenium incorporated in pyrite and mackinawite as determined by XAFS analyses.
    Diener A; Neumann T; Kramar U; Schild D
    J Contam Hydrol; 2012 May; 133():30-9. PubMed ID: 22484403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying redox transition zones in the subsurface of a site with historical contamination.
    Yin X; Hua H; Burns F; Fennell D; Dyer J; Landis R; Axe L
    Sci Total Environ; 2021 Mar; 762():143105. PubMed ID: 33131844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge.
    Karikari-Yeboah O; Skinner W; Addai-Mensah J
    Environ Monit Assess; 2019 Mar; 191(4):216. PubMed ID: 30868246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of Fe in waters and bottom sediments of a small estuarine catchment, Pumicestone Region, southeast Queensland, Australia.
    Liaghati T; Cox ME; Preda M
    Sci Total Environ; 2005 Jan; 336(1-3):243-54. PubMed ID: 15589262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using the high-temperature phase transition of iron sulfide minerals as an indicator of fault slip temperature.
    Chen YH; Chen YH; Hsu WD; Chang YC; Sheu HS; Lee JJ; Lin SK
    Sci Rep; 2019 May; 9(1):7950. PubMed ID: 31138857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic sorbents biomineralization on the basis of iron sulphides.
    Jencarova J; Luptakova A; Vitkovska N; Matysek D; Jandacka P
    Environ Technol; 2018 Nov; 39(22):2916-2925. PubMed ID: 28818029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption and redox reactions of As(III) and As(V) within secondary mineral coatings on aquifer sediment grains.
    Singer DM; Fox PM; Guo H; Marcus MA; Davis JA
    Environ Sci Technol; 2013 Oct; 47(20):11569-76. PubMed ID: 24041305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron Transfer between Electrically Conductive Minerals and Quinones.
    Taran O
    Front Chem; 2017; 5():49. PubMed ID: 28752088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration.
    Wade ML; Agresti DG; Wdowiak TJ; Armendarez LP; Farmer JD
    J Geophys Res; 1999 Apr; 104(E4):8489-507. PubMed ID: 11542933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.
    Lin S; Krause F; Voordouw G
    Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations.
    Kumar N; Millot R; Battaglia-Brunet F; Omoregie E; Chaurand P; Borschneck D; Bastiaens L; Rose J
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5960-8. PubMed ID: 26604198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of Organic Carbon Sequestered by Biogenic Iron Sulfide Minerals in Long-Term Anoxic Laboratory Incubations.
    Nabeh N; Brokaw C; Picard A
    Front Microbiol; 2022; 13():662219. PubMed ID: 35572660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of how contaminants arise in a dredged marine sediment and analysis of the effect of natural weathering.
    Couvidat J; Chatain V; Bouzahzah H; Benzaazoua M
    Sci Total Environ; 2018 May; 624():323-332. PubMed ID: 29258033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfide influence on metal behavior in a polluted southern Mediterranean lagoon: implications for management.
    Oueslati W; Helali MA; Zaaboub N; Sebei A; Added A; Aleya L
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2248-2264. PubMed ID: 29119489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of pyrite oxidation by surface coating: a long-term field study.
    Kang CU; Jeon BH; Park SS; Kang JS; Kim KH; Kim DK; Choi UK; Kim SJ
    Environ Geochem Health; 2016 Oct; 38(5):1137-1146. PubMed ID: 26493832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.