BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33092866)

  • 21. A meta-analysis of factors influencing concentrations of brominated flame retardants and organophosphate esters in indoor dust.
    Al-Omran LS; Harrad S; Abou-Elwafa Abdallah M
    Environ Pollut; 2021 Sep; 285():117262. PubMed ID: 33964554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Within-room and within-building temporal and spatial variations in concentrations of polybrominated diphenyl ethers (PBDEs) in indoor dust.
    Muenhor D; Harrad S
    Environ Int; 2012 Oct; 47():23-7. PubMed ID: 22732214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Associations between PBDEs in office air, dust, and surface wipes.
    Watkins DJ; McClean MD; Fraser AJ; Weinberg J; Stapleton HM; Webster TF
    Environ Int; 2013 Sep; 59():124-32. PubMed ID: 23797055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of legacy and emerging flame retardants in indoor dust from a rural village (Kopawa) in Nepal: Implication for source apportionment and health risk assessment.
    Yadav IC; Devi NL; Singh VK; Li J; Zhang G
    Ecotoxicol Environ Saf; 2019 Jan; 168():304-314. PubMed ID: 30390529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city.
    Cristale J; Aragão Belé TG; Lacorte S; Rodrigues de Marchi MR
    Environ Pollut; 2018 Jun; 237():695-703. PubMed ID: 29129432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The occurrence of PAHs and flame-retardants in air and dust from Australian fire stations.
    Banks APW; Engelsman M; He C; Wang X; Mueller JF
    J Occup Environ Hyg; 2020; 17(2-3):73-84. PubMed ID: 31910147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flame retardants in indoor dust and air of a hotel in Japan.
    Takigami H; Suzuki G; Hirai Y; Ishikawa Y; Sunami M; Sakai S
    Environ Int; 2009 May; 35(4):688-93. PubMed ID: 19185920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Legacy and alternative flame retardants in indoor dust from e-waste industrial parks and adjacent residential houses in South China: Variations, sources, and health implications.
    Zhou Y; Li Z; Zhu Y; Chang Z; Hu Y; Tao L; Zheng T; Xiang M; Yu Y
    Sci Total Environ; 2022 Nov; 845():157307. PubMed ID: 35839871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure.
    Chen Y; Liu Q; Ma J; Yang S; Wu Y; An Y
    Chemosphere; 2020 Dec; 260():127633. PubMed ID: 32683015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comprehensive risk assessment of human inhalation exposure to atmospheric halogenated flame retardants and organophosphate esters in an urban zone.
    Hu YJ; Bao LJ; Huang CL; Li SM; Zeng EY
    Environ Pollut; 2019 Sep; 252(Pt B):1902-1909. PubMed ID: 31227346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Per-and polyfluoroalkyl substances (PFAS) and persistent chemical mixtures in dust from U.S. colleges.
    Schildroth S; Rodgers KM; Strynar M; McCord J; Poma G; Covaci A; Dodson RE
    Environ Res; 2022 Apr; 206():112530. PubMed ID: 34902383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concentrations and loadings of polybrominated diphenyl ethers in dust from low-income households in California.
    Quirós-Alcalá L; Bradman A; Nishioka M; Harnly ME; Hubbard A; McKone TE; Eskenazi B
    Environ Int; 2011 Apr; 37(3):592-6. PubMed ID: 21239062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Legacy and emerging flame retardants in indoor and outdoor dust from Indo-Gangetic Region (Patna) of India: implication for source apportionment and health risk exposure.
    Yadav IC; Devi NL
    Environ Sci Pollut Res Int; 2022 Sep; 29(45):68216-68231. PubMed ID: 35536469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: An assessment of human exposure.
    McGrath TJ; Morrison PD; Ball AS; Clarke BO
    Environ Int; 2018 Apr; 113():191-201. PubMed ID: 29428609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction of hazardous chemicals in Swedish preschool dust through article substitution actions.
    Giovanoulis G; Nguyen MA; Arwidsson M; Langer S; Vestergren R; Lagerqvist A
    Environ Int; 2019 Sep; 130():104921. PubMed ID: 31229872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concentrations, sources and human exposure implications of organophosphate esters in indoor dust from South Africa.
    Abafe OA; Martincigh BS
    Chemosphere; 2019 Sep; 230():239-247. PubMed ID: 31103870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Product screening for sources of halogenated flame retardants in Canadian house and office dust.
    Abbasi G; Saini A; Goosey E; Diamond ML
    Sci Total Environ; 2016 Mar; 545-546():299-307. PubMed ID: 26747994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organophosphate esters flame retardants in the indoor environment.
    Vykoukalová M; Venier M; Vojta Š; Melymuk L; Bečanová J; Romanak K; Prokeš R; Okeme JO; Saini A; Diamond ML; Klánová J
    Environ Int; 2017 Sep; 106():97-104. PubMed ID: 28624751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organohalogenated flame retardants and organophosphate esters from home and preschool dust in Sweden: Pollution characteristics, indoor sources and intake assessment.
    Tao F; Sjöström Y; de Wit CA; Hagström K; Hagberg J
    Sci Total Environ; 2023 Oct; 896():165198. PubMed ID: 37391153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organophosphate esters in house dust: A comparative study between Canada, Turkey and Egypt.
    Shoeib T; Webster GM; Hassan Y; Tepe S; Yalcin M; Turgut C; Kurt-Karakuş PB; Jantunen L
    Sci Total Environ; 2019 Feb; 650(Pt 1):193-201. PubMed ID: 30196219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.