These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 33093196)

  • 21. Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140.
    Go EP; Herschhorn A; Gu C; Castillo-Menendez L; Zhang S; Mao Y; Chen H; Ding H; Wakefield JK; Hua D; Liao HX; Kappes JC; Sodroski J; Desaire H
    J Virol; 2015 Aug; 89(16):8245-57. PubMed ID: 26018173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycosylation of the core of the HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity.
    Rathore U; Saha P; Kesavardhana S; Kumar AA; Datta R; Devanarayanan S; Das R; Mascola JR; Varadarajan R
    J Biol Chem; 2017 Jun; 292(24):10197-10219. PubMed ID: 28446609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins.
    Schiffner T; Pallesen J; Russell RA; Dodd J; de Val N; LaBranche CC; Montefiori D; Tomaras GD; Shen X; Harris SL; Moghaddam AE; Kalyuzhniy O; Sanders RW; McCoy LE; Moore JP; Ward AB; Sattentau QJ
    PLoS Pathog; 2018 May; 14(5):e1006986. PubMed ID: 29746590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions.
    Seabright GE; Cottrell CA; van Gils MJ; D'addabbo A; Harvey DJ; Behrens AJ; Allen JD; Watanabe Y; Scaringi N; Polveroni TM; Maker A; Vasiljevic S; de Val N; Sanders RW; Ward AB; Crispin M
    Structure; 2020 Aug; 28(8):897-909.e6. PubMed ID: 32433992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycoengineering HIV-1 Env creates 'supercharged' and 'hybrid' glycans to increase neutralizing antibody potency, breadth and saturation.
    Crooks ET; Grimley SL; Cully M; Osawa K; Dekkers G; Saunders K; Rämisch S; Menis S; Schief WR; Doria-Rose N; Haynes B; Murrell B; Cale EM; Pegu A; Mascola JR; Vidarsson G; Binley JM
    PLoS Pathog; 2018 May; 14(5):e1007024. PubMed ID: 29718999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conserved Role of an N-Linked Glycan on the Surface Antigen of Human Immunodeficiency Virus Type 1 Modulating Virus Sensitivity to Broadly Neutralizing Antibodies against the Receptor and Coreceptor Binding Sites.
    Townsley S; Li Y; Kozyrev Y; Cleveland B; Hu SL
    J Virol; 2016 Jan; 90(2):829-41. PubMed ID: 26512079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies.
    LaBranche CC; McGuire AT; Gray MD; Behrens S; Kwong PDK; Chen X; Zhou T; Sattentau QJ; Peacock J; Eaton A; Greene K; Gao H; Tang H; Perez LG; Chen X; Saunders KO; Kwong PD; Mascola JR; Haynes BF; Stamatatos L; Montefiori DC
    PLoS Pathog; 2018 Nov; 14(11):e1007431. PubMed ID: 30395637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques.
    Klasse PJ; Ketas TJ; Cottrell CA; Ozorowski G; Debnath G; Camara D; Francomano E; Pugach P; Ringe RP; LaBranche CC; van Gils MJ; Bricault CA; Barouch DH; Crotty S; Silvestri G; Kasturi S; Pulendran B; Wilson IA; Montefiori DC; Sanders RW; Ward AB; Moore JP
    PLoS Pathog; 2018 Feb; 14(2):e1006913. PubMed ID: 29474444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure.
    Lee JH; Andrabi R; Su CY; Yasmeen A; Julien JP; Kong L; Wu NC; McBride R; Sok D; Pauthner M; Cottrell CA; Nieusma T; Blattner C; Paulson JC; Klasse PJ; Wilson IA; Burton DR; Ward AB
    Immunity; 2017 Apr; 46(4):690-702. PubMed ID: 28423342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike.
    Scharf L; Scheid JF; Lee JH; West AP; Chen C; Gao H; Gnanapragasam PN; Mares R; Seaman MS; Ward AB; Nussenzweig MC; Bjorkman PJ
    Cell Rep; 2014 May; 7(3):785-95. PubMed ID: 24767986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational Epitope-Specific Broadly Neutralizing Plasma Antibodies Obtained from an HIV-1 Clade C-Infected Elite Neutralizer Mediate Autologous Virus Escape through Mutations in the V1 Loop.
    Patil S; Kumar R; Deshpande S; Samal S; Shrivastava T; Boliar S; Bansal M; Chaudhary NK; Srikrishnan AK; Murugavel KG; Solomon S; Simek M; Koff WC; Goyal R; Chakrabarti BK; Bhattacharya J
    J Virol; 2016 Jan; 90(7):3446-57. PubMed ID: 26763999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity.
    Hu JK; Crampton JC; Cupo A; Ketas T; van Gils MJ; Sliepen K; de Taeye SW; Sok D; Ozorowski G; Deresa I; Stanfield R; Ward AB; Burton DR; Klasse PJ; Sanders RW; Moore JP; Crotty S
    J Virol; 2015 Oct; 89(20):10383-98. PubMed ID: 26246566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex.
    Gift SK; Leaman DP; Zhang L; Kim AS; Zwick MB
    J Virol; 2017 Dec; 91(24):. PubMed ID: 28978711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibody responses to the HIV-1 envelope high mannose patch.
    Daniels CN; Saunders KO
    Adv Immunol; 2019; 143():11-73. PubMed ID: 31607367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microsecond Dynamics and Network Analysis of the HIV-1 SOSIP Env Trimer Reveal Collective Behavior and Conserved Microdomains of the Glycan Shield.
    Lemmin T; Soto C; Stuckey J; Kwong PD
    Structure; 2017 Oct; 25(10):1631-1639.e2. PubMed ID: 28890362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope.
    Barnes CO; Gristick HB; Freund NT; Escolano A; Lyubimov AY; Hartweger H; West AP; Cohen AE; Nussenzweig MC; Bjorkman PJ
    Nat Commun; 2018 Mar; 9(1):1251. PubMed ID: 29593217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design.
    Rantalainen K; Berndsen ZT; Murrell S; Cao L; Omorodion O; Torres JL; Wu M; Umotoy J; Copps J; Poignard P; Landais E; Paulson JC; Wilson IA; Ward AB
    Cell Rep; 2018 Jun; 23(11):3249-3261. PubMed ID: 29898396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits.
    Yang YR; McCoy LE; van Gils MJ; Andrabi R; Turner HL; Yuan M; Cottrell CA; Ozorowski G; Voss J; Pauthner M; Polveroni TM; Messmer T; Wilson IA; Sanders RW; Burton DR; Ward AB
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31941772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein and Glycan Mimicry in HIV Vaccine Design.
    Seabright GE; Doores KJ; Burton DR; Crispin M
    J Mol Biol; 2019 May; 431(12):2223-2247. PubMed ID: 31028779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies.
    Wang H; Gristick HB; Scharf L; West AP; Galimidi RP; Seaman MS; Freund NT; Nussenzweig MC; Bjorkman PJ
    Elife; 2017 May; 6():. PubMed ID: 28548638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.