BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 33093234)

  • 61. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster.
    Li W; Wang Y; Okamoto M; Crawford NM; Siddiqi MY; Glass AD
    Plant Physiol; 2007 Jan; 143(1):425-33. PubMed ID: 17085507
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Arabidopsis NLP7 gene regulates nitrate signaling via NRT1.1-dependent pathway in the presence of ammonium.
    Zhao L; Zhang W; Yang Y; Li Z; Li N; Qi S; Crawford NM; Wang Y
    Sci Rep; 2018 Jan; 8(1):1487. PubMed ID: 29367694
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Potential transceptor AtNRT1.13 modulates shoot architecture and flowering time in a nitrate-dependent manner.
    Chen HY; Lin SH; Cheng LH; Wu JJ; Lin YC; Tsay YF
    Plant Cell; 2021 Jul; 33(5):1492-1505. PubMed ID: 33580260
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis.
    Rouached H; Secco D; Arpat B; Poirier Y
    BMC Plant Biol; 2011 Jan; 11():19. PubMed ID: 21261953
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants.
    Pan W; You Y; Weng YN; Shentu JL; Lu Q; Xu QR; Liu HJ; Du ST
    Ecotoxicol Environ Saf; 2020 Mar; 190():110104. PubMed ID: 31884326
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana.
    Kalcsits LA; Guy RD
    Physiol Plant; 2013 Oct; 149(2):249-59. PubMed ID: 23414092
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The transcription factors, STOP1 and TCP20, are required for root system architecture alterations in response to nitrate deficiency.
    Tokizawa M; Enomoto T; Chandnani R; Mora-Macías J; Burbridge C; Armenta-Medina A; Kobayashi Y; Yamamoto YY; Koyama H; Kochian LV
    Proc Natl Acad Sci U S A; 2023 Aug; 120(35):e2300446120. PubMed ID: 37611056
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Uptake, allocation and signaling of nitrate.
    Wang YY; Hsu PK; Tsay YF
    Trends Plant Sci; 2012 Aug; 17(8):458-67. PubMed ID: 22658680
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The primary nitrate response: a multifaceted signalling pathway.
    Medici A; Krouk G
    J Exp Bot; 2014 Oct; 65(19):5567-76. PubMed ID: 24942915
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Arabidopsis eIF4E1 regulates NRT1.1-mediated nitrate signaling at both translational and transcriptional levels.
    Li N; Duan Y; Ye Q; Ma Y; Ma R; Zhao L; Zhu S; Yu F; Qi S; Wang Y
    New Phytol; 2023 Oct; 240(1):338-353. PubMed ID: 37424317
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp.
    Mantelin S; Desbrosses G; Larcher M; Tranbarger TJ; Cleyet-Marel JC; Touraine B
    Planta; 2006 Feb; 223(3):591-603. PubMed ID: 16160849
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1.
    Wang R; Xing X; Wang Y; Tran A; Crawford NM
    Plant Physiol; 2009 Sep; 151(1):472-8. PubMed ID: 19633234
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana.
    Tian QY; Sun P; Zhang WH
    New Phytol; 2009 Dec; 184(4):918-31. PubMed ID: 19732351
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Modification of nitrate uptake pathway in plants affects the cadmium uptake by roots.
    Guan MY; Fan SK; Fang XZ; Jin CW
    Plant Signal Behav; 2015; 10(3):e990794. PubMed ID: 25830329
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multiple roles of nitrate transport accessory protein NAR2 in plants.
    Feng H; Fan X; Fan X; Liu X; Miller AJ; Xu G
    Plant Signal Behav; 2011 Sep; 6(9):1286-9. PubMed ID: 21852757
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces.
    Lemaire L; Deleu C; Le Deunff E
    J Exp Bot; 2013 Jul; 64(10):2725-37. PubMed ID: 23811694
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Shoot-to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis.
    Ota R; Ohkubo Y; Yamashita Y; Ogawa-Ohnishi M; Matsubayashi Y
    Nat Commun; 2020 Jan; 11(1):641. PubMed ID: 32005881
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Arabidopsis CPSF30-L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1.1.
    Li Z; Wang R; Gao Y; Wang C; Zhao L; Xu N; Chen KE; Qi S; Zhang M; Tsay YF; Crawford NM; Wang Y
    New Phytol; 2017 Dec; 216(4):1205-1222. PubMed ID: 28850721
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function.
    Quintana J; Bernal M; Scholle M; Holländer-Czytko H; Nguyen NT; Piotrowski M; Mendoza-Cózatl DG; Haydon MJ; Krämer U
    Plant J; 2022 Feb; 109(4):992-1013. PubMed ID: 34839543
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development.
    Li Y; Ouyang J; Wang YY; Hu R; Xia K; Duan J; Wang Y; Tsay YF; Zhang M
    Sci Rep; 2015 Apr; 5():9635. PubMed ID: 25923512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.