BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33093518)

  • 1. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing.
    Lissandrello CA; Santos JA; Hsi P; Welch M; Mott VL; Kim ES; Chesin J; Haroutunian NJ; Stoddard AG; Czarnecki A; Coppeta JR; Freeman DK; Flusberg DA; Balestrini JL; Tandon V
    Sci Rep; 2020 Oct; 10(1):18045. PubMed ID: 33093518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable continuous-flow electroporation platform enabling T cell transfection for cellular therapy manufacturing.
    VanderBurgh JA; Corso TN; Levy SL; Craighead HG
    Sci Rep; 2023 Apr; 13(1):6857. PubMed ID: 37185305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustophoretic rapid media exchange and continuous-flow electrotransfection of primary human T cells for applications in automated cellular therapy manufacturing.
    Hsi P; Christianson RJ; Dubay RA; Lissandrello CA; Fiering J; Balestrini JL; Tandon V
    Lab Chip; 2019 Sep; 19(18):2978-2992. PubMed ID: 31410419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9.
    Jarrell JA; Sytsma BJ; Wilson LH; Pan FL; Lau KHWJ; Kirby GTS; Lievano AA; Pawell RS
    Sci Rep; 2021 Jun; 11(1):11818. PubMed ID: 34083685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a microfluidic cell transfection device into gene-edited CAR T cell manufacturing workflow.
    Yu T; Jhita N; Shankles P; Fedanov A; Kramer N; Raikar SS; Sulchek T
    Lab Chip; 2023 Nov; 23(22):4804-4820. PubMed ID: 37830228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic and Nanofluidic Intracellular Delivery.
    Hur J; Chung AJ
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004595. PubMed ID: 34096197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-mediated knockout of clinically relevant alloantigenes in human primary T cells.
    Kamali E; Rahbarizadeh F; Hojati Z; Frödin M
    BMC Biotechnol; 2021 Jan; 21(1):9. PubMed ID: 33514392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel non-viral delivery method that enables efficient engineering of primary human T cells for ex vivo cell therapy applications.
    Kavanagh H; Dunne S; Martin DS; McFadden E; Gallagher L; Schwaber J; Leonard S; O'Dea S
    Cytotherapy; 2021 Sep; 23(9):852-860. PubMed ID: 33941482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroporation-Mediated Delivery of Cas9 Ribonucleoproteins Results in High Levels of Gene Editing in Primary Hepatocytes.
    Rathbone T; Ates I; Fernando L; Addlestone E; Lee CM; Richards VP; Cottle RN
    CRISPR J; 2022 Jun; 5(3):397-409. PubMed ID: 35238624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device.
    Valero A; Post JN; van Nieuwkasteele JW; Ter Braak PM; Kruijer W; van den Berg A
    Lab Chip; 2008 Jan; 8(1):62-7. PubMed ID: 18094762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid.
    Tang Q; Liu J; Jiang Y; Zhang M; Mao L; Wang M
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46585-46590. PubMed ID: 31763806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroporation-Mediated CRISPR/Cas9 Genome Editing in Rat Zygotes.
    Davis DJ; Men H; Bryda EC
    Methods Mol Biol; 2023; 2631():267-276. PubMed ID: 36995672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 Ribonucleoprotein-mediated Precise Gene Editing by Tube Electroporation.
    Ma L; Jang L; Chen J; Song J; Yang D; Zhang J; Chen YE; Xu J
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31282887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR Base Editing in Induced Pluripotent Stem Cells.
    Chang YJ; Xu CL; Cui X; Bassuk AG; Mahajan VB; Tsai YT; Tsang SH
    Methods Mol Biol; 2019; 2045():337-346. PubMed ID: 31250381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Editing in Staphylococcus aureus by Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection.
    Penewit K; Salipante SJ
    Methods Mol Biol; 2020; 2050():127-143. PubMed ID: 31468487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Electrochemical Protocol for CRISPR-Mediated Gene-Editing of Sheep Embryonic Fibroblast Cells.
    Eghbalsaied S; Kues WA
    Cells Tissues Organs; 2023; 212(2):176-184. PubMed ID: 34823242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of CRISPR-Cas9 into Mouse Zygotes by Electroporation.
    Qin W; Wang H
    Methods Mol Biol; 2019; 1874():179-190. PubMed ID: 30353514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations.
    Loo J; Sicher I; Goff A; Kim O; Clary N; Alexeev A; Sulchek T; Zamarayeva A; Han S; Calero-Garcia M
    Sci Rep; 2021 Nov; 11(1):21407. PubMed ID: 34725429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method.
    Wei YY; Zhan QM; Zhu XX; Yan AF; Feng J; Liu L; Li JH; Tang DS
    Biotechnol Lett; 2020 Nov; 42(11):2091-2109. PubMed ID: 32494996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.