BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33093595)

  • 21. Nickel-pincer cofactor biosynthesis involves LarB-catalyzed pyridinium carboxylation and LarE-dependent sacrificial sulfur insertion.
    Desguin B; Soumillion P; Hols P; Hausinger RP
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5598-603. PubMed ID: 27114550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of fatty acid-CoA racemase from Mycobacterium tuberculosis H37Rv.
    Lee KS; Park SM; Rhee KH; Bang WG; Hwang KY; Chi YM
    Proteins; 2006 Aug; 64(3):817-22. PubMed ID: 16755588
    [No Abstract]   [Full Text] [Related]  

  • 23. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.
    Meziane-Cherif D; Stogios PJ; Evdokimova E; Egorova O; Savchenko A; Courvalin P
    mBio; 2015 Aug; 6(4):e00806. PubMed ID: 26265719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unexpected complexity in the lactate racemization system of lactic acid bacteria.
    Desguin B; Soumillion P; Hausinger RP; Hols P
    FEMS Microbiol Rev; 2017 Aug; 41(Supp_1):S71-S83. PubMed ID: 28830089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. D-amino acids in the brain: the biochemistry of brain serine racemase.
    Baumgart F; Rodríguez-Crespo I
    FEBS J; 2008 Jul; 275(14):3538-45. PubMed ID: 18564178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity.
    Fischer C; Ahn YC; Vederas JC
    Nat Prod Rep; 2019 Dec; 36(12):1687-1705. PubMed ID: 30994146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The bottromycin epimerase BotH defines a group of atypical α/β-hydrolase-fold enzymes.
    Sikandar A; Franz L; Adam S; Santos-Aberturas J; Horbal L; Luzhetskyy A; Truman AW; Kalinina OV; Koehnke J
    Nat Chem Biol; 2020 Sep; 16(9):1013-1018. PubMed ID: 32601484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinformatic analysis of fold-type III PLP-dependent enzymes discovers multimeric racemases.
    Knight AM; Nobili A; van den Bergh T; Genz M; Joosten HJ; Albrecht D; Riedel K; Pavlidis IV; Bornscheuer UT
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1499-1507. PubMed ID: 27787586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the structure and function of Klebsiella pneumoniae allantoin racemase.
    French JB; Neau DB; Ealick SE
    J Mol Biol; 2011 Jul; 410(3):447-60. PubMed ID: 21616082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Through the Looking Glass: Chiral Recognition of Substrates and Products at the Active Sites of Racemases and Epimerases.
    Bearne SL
    Chemistry; 2020 Aug; 26(46):10367-10390. PubMed ID: 32166792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Structure and Function of a Microbial Allantoin Racemase Reveal the Origin and Conservation of a Catalytic Mechanism.
    Cendron L; Ramazzina I; Puggioni V; Maccacaro E; Liuzzi A; Secchi A; Zanotti G; Percudani R
    Biochemistry; 2016 Nov; 55(46):6421-6432. PubMed ID: 27797489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor.
    Harty ML; Sharma AN; Bearne SL
    Metallomics; 2019 Mar; 11(3):707-723. PubMed ID: 30843025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Paradigm for CH Bond Cleavage: Structural and Functional Aspects of Transition State Stabilization by Mandelate Racemase.
    Bearne SL; St Maurice M
    Adv Protein Chem Struct Biol; 2017; 109():113-160. PubMed ID: 28683916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discovery of a dipeptide epimerase enzymatic function guided by homology modeling and virtual screening.
    Kalyanaraman C; Imker HJ; Fedorov AA; Fedorov EV; Glasner ME; Babbitt PC; Almo SC; Gerlt JA; Jacobson MP
    Structure; 2008 Nov; 16(11):1668-77. PubMed ID: 19000819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of CntK, the cofactor-independent histidine racemase in staphylopine-mediated metal acquisition of Staphylococcus aureus.
    Luo S; Ju Y; Zhou J; Gu Q; Xu J; Zhou H
    Int J Biol Macromol; 2019 Aug; 135():725-733. PubMed ID: 31129210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enantioselective regulation of lactate racemization by LarR in Lactobacillus plantarum.
    Desguin B; Goffin P; Bakouche N; Diman A; Viaene E; Dandoy D; Fontaine L; Hallet B; Hols P
    J Bacteriol; 2015 Jan; 197(1):219-30. PubMed ID: 25349156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the nickel-inserting cyclometallase LarC from Moorella thermoacetica and identification of a cytidinylylated reaction intermediate.
    Turmo A; Hu J; Hausinger RP
    Metallomics; 2022 Mar; 14(3):. PubMed ID: 35225337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and evaluation of substrate-product analog inhibitors for racemases and epimerases utilizing a 1,1-proton transfer mechanism.
    Bearne SL
    Methods Enzymol; 2023; 690():397-444. PubMed ID: 37858537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High resolution x-ray structure of tyvelose epimerase from Salmonella typhi.
    Koropatkin NM; Liu HW; Holden HM
    J Biol Chem; 2003 Jun; 278(23):20874-81. PubMed ID: 12642575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and conformational stability of a tetrameric thermostable N-succinylamino acid racemase.
    Pozo-Dengra J; Martínez-Rodríguez S; Contreras LM; Prieto J; Andújar-Sánchez M; Clemente-Jiménez JM; Las Heras-Vázquez FJ; Rodríguez-Vico F; Neira JL
    Biopolymers; 2009 Sep; 91(9):757-72. PubMed ID: 19517534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.