These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 33093633)
21. An augmented reality system for upper-limb post-stroke motor rehabilitation: a feasibility study. Assis GA; Corrêa AG; Martins MB; Pedrozo WG; Lopes Rde D Disabil Rehabil Assist Technol; 2016 Aug; 11(6):521-8. PubMed ID: 25367103 [TBL] [Abstract][Full Text] [Related]
22. Potential benefits of music playing in stroke upper limb motor rehabilitation. Grau-Sánchez J; Münte TF; Altenmüller E; Duarte E; Rodríguez-Fornells A Neurosci Biobehav Rev; 2020 May; 112():585-599. PubMed ID: 32092314 [TBL] [Abstract][Full Text] [Related]
23. Evolution of upper limb kinematics four years after subacute robot-assisted rehabilitation in stroke patients. Pila O; Duret C; Gracies JM; Francisco GE; Bayle N; Hutin É Int J Neurosci; 2018 Nov; 128(11):1030-1039. PubMed ID: 29619890 [No Abstract] [Full Text] [Related]
24. Nuanced effects of music interventions on rehabilitation outcomes after stroke: a systematic review. Le Perf G; Donguy AL; Thebault G Top Stroke Rehabil; 2019 Sep; 26(6):473-484. PubMed ID: 31170034 [No Abstract] [Full Text] [Related]
25. Guided motor imagery in healthy adults and stroke: does strategy matter? Hovington CL; Brouwer B Neurorehabil Neural Repair; 2010; 24(9):851-7. PubMed ID: 20834045 [TBL] [Abstract][Full Text] [Related]
26. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair. Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331 [TBL] [Abstract][Full Text] [Related]
27. Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements. Nunes WM; Rodrigues LA; Oliveira LP; Ribeiro JF; Carvalho JC; Gonçalves RS IEEE Int Conf Rehabil Robot; 2011; 2011():5975503. PubMed ID: 22275699 [TBL] [Abstract][Full Text] [Related]
28. Using kinematic analysis to evaluate constraint-induced movement therapy in chronic stroke patients. Caimmi M; Carda S; Giovanzana C; Maini ES; Sabatini AM; Smania N; Molteni F Neurorehabil Neural Repair; 2008; 22(1):31-9. PubMed ID: 17595381 [TBL] [Abstract][Full Text] [Related]
29. Reactive postural control deficits in patients with posterior parietal cortex lesions after stroke and the influence of auditory cueing. Lin YH; Tang PF; Wang YH; Eng JJ; Lin KC; Lu L; Jeng JS; Chen SC Am J Phys Med Rehabil; 2014 Oct; 93(10):849-59. PubMed ID: 24901758 [TBL] [Abstract][Full Text] [Related]
30. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655 [TBL] [Abstract][Full Text] [Related]
31. Melodic contour identification by cochlear implant listeners. Galvin JJ; Fu QJ; Nogaki G Ear Hear; 2007 Jun; 28(3):302-19. PubMed ID: 17485980 [TBL] [Abstract][Full Text] [Related]
32. Effects of transcranial direct current stimulation on the rehabilitation of painful shoulder following a stroke: protocol for a randomized, controlled, double-blind, clinical trial. de Souza JA; Corrêa JCF; Agnol LD; Dos Santos FR; Gomes MRP; Corrêa FI Trials; 2019 Mar; 20(1):165. PubMed ID: 30876431 [TBL] [Abstract][Full Text] [Related]
33. The role of auditory feedback in music-supported stroke rehabilitation: A single-blinded randomised controlled intervention. van Vugt FT; Kafczyk T; Kuhn W; Rollnik JD; Tillmann B; Altenmüller E Restor Neurol Neurosci; 2016; 34(2):297-311. PubMed ID: 26923616 [TBL] [Abstract][Full Text] [Related]
34. Kinematic analysis of upper limbs and trunk movement during bilateral movement after stroke. Messier S; Bourbonnais D; Desrosiers J; Roy Y Arch Phys Med Rehabil; 2006 Nov; 87(11):1463-70. PubMed ID: 17084121 [TBL] [Abstract][Full Text] [Related]
35. Systematic Review on Kinematic Assessments of Upper Limb Movements After Stroke. Schwarz A; Kanzler CM; Lambercy O; Luft AR; Veerbeek JM Stroke; 2019 Mar; 50(3):718-727. PubMed ID: 30776997 [TBL] [Abstract][Full Text] [Related]
36. Understanding adaptive motor control of the paretic upper limb early poststroke: the EXPLICIT-stroke program. van Kordelaar J; van Wegen EE; Nijland RH; Daffertshofer A; Kwakkel G Neurorehabil Neural Repair; 2013; 27(9):854-63. PubMed ID: 23884015 [TBL] [Abstract][Full Text] [Related]
37. Dance-based exergaming for upper extremity rehabilitation and reducing fall-risk in community-dwelling individuals with chronic stroke. A preliminary study. Subramaniam S; Bhatt T Top Stroke Rehabil; 2019 Dec; 26(8):565-575. PubMed ID: 31576774 [No Abstract] [Full Text] [Related]
38. Effect of auditory constraints on motor performance depends on stage of recovery post-stroke. Aluru V; Lu Y; Leung A; Verghese J; Raghavan P Front Neurol; 2014; 5():106. PubMed ID: 25002859 [TBL] [Abstract][Full Text] [Related]
39. Musical Sonification of Arm Movements in Stroke Rehabilitation Yields Limited Benefits. Nikmaram N; Scholz DS; Großbach M; Schmidt SB; Spogis J; Belardinelli P; Müller-Dahlhaus F; Remy J; Ziemann U; Rollnik JD; Altenmüller E Front Neurosci; 2019; 13():1378. PubMed ID: 31920526 [TBL] [Abstract][Full Text] [Related]
40. Music-based intervention drives paretic limb acceleration into intentional movement frequencies in chronic stroke rehabilitation. Loria T; de Grosbois J; Haire C; Vuong V; Schaffert N; Tremblay L; Thaut MH Front Rehabil Sci; 2022; 3():989810. PubMed ID: 36262914 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]