BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 33093842)

  • 1. Prediction of Recombination Spots Using Novel Hybrid Feature Extraction Method via Deep Learning Approach.
    Khan F; Khan M; Iqbal N; Khan S; Muhammad Khan D; Khan A; Wei DQ
    Front Genet; 2020; 11():539227. PubMed ID: 33093842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iRecSpot-EF: Effective sequence based features for recombination hotspot prediction.
    Jani MR; Khan Mozlish MT; Ahmed S; Tahniat NS; Farid DM; Shatabda S
    Comput Biol Med; 2018 Dec; 103():17-23. PubMed ID: 30336361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iRSpot-DACC: a computational predictor for recombination hot/cold spots identification based on dinucleotide-based auto-cross covariance.
    Liu B; Liu Y; Jin X; Wang X; Liu B
    Sci Rep; 2016 Sep; 6():33483. PubMed ID: 27641752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition.
    Chen W; Feng PM; Lin H; Chou KC
    Nucleic Acids Res; 2013 Apr; 41(6):e68. PubMed ID: 23303794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-dependent prediction of recombination hotspots in Saccharomyces cerevisiae.
    Liu G; Liu J; Cui X; Cai L
    J Theor Biol; 2012 Jan; 293():49-54. PubMed ID: 22016025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RF-DYMHC: detecting the yeast meiotic recombination hotspots and coldspots by random forest model using gapped dinucleotide composition features.
    Jiang P; Wu H; Wei J; Sang F; Sun X; Lu Z
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W47-51. PubMed ID: 17478517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of Consumer Preference by Analysis and Classification EEG Signals.
    Aldayel M; Ykhlef M; Al-Nafjan A
    Front Hum Neurosci; 2020; 14():604639. PubMed ID: 33519402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter.
    Abdelminaam DS; Ismail FH; Taha M; Taha A; Houssein EH; Nabil A
    IEEE Access; 2021; 9():27840-27867. PubMed ID: 34786308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iRSpot-PDI: Identification of recombination spots by incorporating dinucleotide property diversity information into Chou's pseudo components.
    Zhang L; Kong L
    Genomics; 2019 May; 111(3):457-464. PubMed ID: 29548799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iRSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou's Pseudo components.
    Al Maruf MA; Shatabda S
    Genomics; 2019 Jul; 111(4):966-972. PubMed ID: 29935224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components.
    Qiu WR; Xiao X; Chou KC
    Int J Mol Sci; 2014 Jan; 15(2):1746-66. PubMed ID: 24469313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iRSpot-Pse6NC: Identifying recombination spots in
    Yang H; Qiu WR; Liu G; Guo FB; Chen W; Chou KC; Lin H
    Int J Biol Sci; 2018; 14(8):883-891. PubMed ID: 29989083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou's pseudo components.
    Zhang L; Kong L
    J Theor Biol; 2018 Mar; 441():1-8. PubMed ID: 29305179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SVM-RLF-DNN: A DNN with reliefF and SVM for automatic identification of COVID from chest X-ray and CT images.
    Saha S; Nandi D
    Digit Health; 2024; 10():20552076241257045. PubMed ID: 38812845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-based identification of recombination spots using pseudo nucleic acid representation and recursive feature extraction by linear kernel SVM.
    Li L; Yu S; Xiao W; Li Y; Huang L; Zheng X; Zhou S; Yang H
    BMC Bioinformatics; 2014 Nov; 15(1):340. PubMed ID: 25409550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iRSpot-DTS: Predict recombination spots by incorporating the dinucleotide-based spare-cross covariance information into Chou's pseudo components.
    Zhang S; Yang K; Lei Y; Song K
    Genomics; 2019 Dec; 111(6):1760-1770. PubMed ID: 30529702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples.
    Kabir M; Hayat M
    Mol Genet Genomics; 2016 Feb; 291(1):285-96. PubMed ID: 26319782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced prediction of recombination hotspots using input features extracted by class specific autoencoders.
    Nath A; Karthikeyan S
    J Theor Biol; 2018 May; 444():73-82. PubMed ID: 29462625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feature-based approach to predict hot spots in protein-DNA binding interfaces.
    Zhang S; Zhao L; Zheng CH; Xia J
    Brief Bioinform; 2020 May; 21(3):1038-1046. PubMed ID: 30957840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Support vector machine for classification of meiotic recombination hotspots and coldspots in Saccharomyces cerevisiae based on codon composition.
    Zhou T; Weng J; Sun X; Lu Z
    BMC Bioinformatics; 2006 Apr; 7():223. PubMed ID: 16640774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.