BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 33093842)

  • 21. Recombination Hotspot/Coldspot Identification Combining Three Different Pseudocomponents via an Ensemble Learning Approach.
    Liu B; Liu Y; Huang D
    Biomed Res Int; 2016; 2016():8527435. PubMed ID: 27648451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing and comparing deep learning and machine learning algorithms for osteoporosis risk prediction.
    Qiu C; Su K; Luo Z; Tian Q; Zhao L; Wu L; Deng H; Shen H
    Front Artif Intell; 2024; 7():1355287. PubMed ID: 38919268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae.
    Yang H; Yang W; Dao FY; Lv H; Ding H; Chen W; Lin H
    Brief Bioinform; 2020 Sep; 21(5):1568-1580. PubMed ID: 31633777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombination spot identification Based on gapped k-mers.
    Wang R; Xu Y; Liu B
    Sci Rep; 2016 Mar; 6():23934. PubMed ID: 27030570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic Marks and Variation of Sequence-Based Information Along Genomic Regions Are Predictive of Recombination Hot/Cold Spots in
    Liu G; Song S; Zhang Q; Dong B; Sun Y; Liu G; Zhao X
    Front Genet; 2021; 12():705038. PubMed ID: 34267784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.
    Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS
    J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information.
    Ali F; Ahmed S; Swati ZNK; Akbar S
    J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines.
    Majid A; Ali S; Iqbal M; Kausar N
    Comput Methods Programs Biomed; 2014 Mar; 113(3):792-808. PubMed ID: 24472367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Integrated Machine Learning Approach for Congestive Heart Failure Prediction.
    Singh MS; Thongam K; Choudhary P; Bhagat PK
    Diagnostics (Basel); 2024 Mar; 14(7):. PubMed ID: 38611649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A deep neural network-based approach for prediction of mutagenicity of compounds.
    Kumar R; Khan FU; Sharma A; Siddiqui MH; Aziz IB; Kamal MA; Ashraf GM; Alghamdi BS; Uddin MS
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47641-47650. PubMed ID: 33895950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Learning on High-Throughput Transcriptomics to Predict Drug-Induced Liver Injury.
    Li T; Tong W; Roberts R; Liu Z; Thakkar S
    Front Bioeng Biotechnol; 2020; 8():562677. PubMed ID: 33330410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature-based deep neural network approach for predicting mortality risk in patients with COVID-19.
    Chang TY; Huang CK; Weng CH; Chen JY
    Eng Appl Artif Intell; 2023 Sep; 124():106644. PubMed ID: 37366394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An efficient computer vision-based approach for acute lymphoblastic leukemia prediction.
    Almadhor A; Sattar U; Al Hejaili A; Ghulam Mohammad U; Tariq U; Ben Chikha H
    Front Comput Neurosci; 2022; 16():1083649. PubMed ID: 36507304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hybrid of whale optimization and late acceptance hill climbing based imputation to enhance classification performance in electronic health records.
    Nagarajan G; Dhinesh Babu LD
    J Biomed Inform; 2019 Jun; 94():103190. PubMed ID: 31054960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. COVID-opt-aiNet: A clinical decision support system for COVID-19 detection.
    Kanwal S; Khan F; Alamri S; Dashtipur K; Gogate M
    Int J Imaging Syst Technol; 2022 Mar; 32(2):444-461. PubMed ID: 35465215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.