These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33093862)

  • 81. Challenges and opportunities to improving research in maternal cardiovascular health.
    Lewey J
    Nat Cardiovasc Res; 2023 Jan; 2(1):6-7. PubMed ID: 36875777
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Impact of Male-Origin Microchimerism on Cardiovascular Disease in Women: A Prospective Cohort Study.
    Hallum S; Gerds TA; Sehested TSG; Jakobsen MA; Tjønneland A; Kamper-Jørgensen M
    Am J Epidemiol; 2021 May; 190(5):853-863. PubMed ID: 33184639
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Forever Connected: The Lifelong Biological Consequences of Fetomaternal and Maternofetal Microchimerism.
    Bianchi DW; Khosrotehrani K; Way SS; MacKenzie TC; Bajema I; O'Donoghue K
    Clin Chem; 2021 Jan; 67(2):351-362. PubMed ID: 33417673
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fetal microchimerism and beyond: a new player in regenerative medicine.
    Shangaris P; El Hoss S
    Haematologica; 2023 Jul; 108(7):1731-1733. PubMed ID: 36700405
    [No Abstract]   [Full Text] [Related]  

  • 85. Feto-maternal microchimerism: Memories from pregnancy.
    Cómitre-Mariano B; Martínez-García M; García-Gálvez B; Paternina-Die M; Desco M; Carmona S; Gómez-Gaviro MV
    iScience; 2022 Jan; 25(1):103664. PubMed ID: 35072002
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Whole embryonic detection of maternal microchimeric cells highlights significant differences in their numbers among individuals.
    Fujimoto K; Nakajima A; Hori S; Irie N
    PLoS One; 2021; 16(12):e0261357. PubMed ID: 34941916
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Whole-embryonic identification of maternal microchimeric cell types in mouse using single-cell RNA sequencing.
    Fujimoto K; Nakajima A; Hori S; Tanaka Y; Shirasaki Y; Uemura S; Irie N
    Sci Rep; 2022 Nov; 12(1):18313. PubMed ID: 36333354
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Synergies of Extracellular Vesicles and Microchimerism in Promoting Immunotolerance During Pregnancy.
    Murrieta-Coxca JM; Fuentes-Zacarias P; Ospina-Prieto S; Markert UR; Morales-Prieto DM
    Front Immunol; 2022; 13():837281. PubMed ID: 35844513
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Fetomaternal Microchimerism and Amniotic Fluid Stem Cells: The Current State of Knowledge.
    Rosner M; Hengstschläger M
    Clin Chem; 2022 Jun; 68(6):761-764. PubMed ID: 35588236
    [No Abstract]   [Full Text] [Related]  

  • 90. Characterization of fetal microchimeric immune cells in mouse maternal hearts during physiologic and pathologic pregnancies.
    Lintao RCV; Kammala AK; Radnaa E; Bettayeb M; Vincent KL; Patrikeev I; Yaklic J; Bonney EA; Menon R
    Front Cell Dev Biol; 2023; 11():1256945. PubMed ID: 37808080
    [No Abstract]   [Full Text] [Related]  

  • 91.
    Lapinsky SE; Frise CJ
    Obstet Med; 2023 Sep; 16(3):141. PubMed ID: 37720003
    [No Abstract]   [Full Text] [Related]  

  • 92. Microchimerism as a source of information on future pregnancies.
    Úbeda F; Wild G
    Proc Biol Sci; 2023 Aug; 290(2005):20231142. PubMed ID: 37608718
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Adopted neoplastic cells and the consequences of their existence.
    Lazebnik Y
    Oncotarget; 2023 Apr; 14():321-341. PubMed ID: 37057881
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Markers of placental function correlate with prevalence and quantity of nucleated fetal cells in maternal circulation in normotensive term pregnancies.
    Fjeldstad HE; Jacobsen DP; Johnsen GM; Sugulle M; Chae A; Kanaan SB; Gammill HS; Staff AC
    Acta Obstet Gynecol Scand; 2023 Jun; 102(6):690-698. PubMed ID: 36933003
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Ontogeny of the Dyad: the Relationship Between Maternal and Offspring Neuroendocrine Function.
    Voegtline KM; Dhaurali S; Wainger J; Lauzon S
    Curr Psychiatry Rep; 2022 May; 24(5):297-306. PubMed ID: 35451797
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Role of Inflammaging on the Reproductive Function and Pregnancy.
    Zavatta A; Parisi F; Mandò C; Scaccabarozzi C; Savasi VM; Cetin I
    Clin Rev Allergy Immunol; 2023 Apr; 64(2):145-160. PubMed ID: 35031955
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Long-term association of pregnancy and maternal brain structure: the Rotterdam Study.
    Aleknaviciute J; Evans TE; Aribas E; de Vries MW; Steegers EAP; Ikram MA; Tiemeier H; Kavousi M; Vernooij MW; Kushner SA
    Eur J Epidemiol; 2022 Mar; 37(3):271-281. PubMed ID: 34989970
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Acute Atherosis Lesions at the Fetal-Maternal Border: Current Knowledge and Implications for Maternal Cardiovascular Health.
    Pitz Jacobsen D; Fjeldstad HE; Johnsen GM; Fosheim IK; Moe K; Alnæs-Katjavivi P; Dechend R; Sugulle M; Staff AC
    Front Immunol; 2021; 12():791606. PubMed ID: 34970270
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The Immunology of Syncytialized Trophoblast.
    Schust DJ; Bonney EA; Sugimoto J; Ezashi T; Roberts RM; Choi S; Zhou J
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33578919
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.