These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33094127)

  • 1. Anomalous sub-diffusion of water in biosystems: From hydrated protein powders to concentrated protein solution to living cells.
    Li R; Liu Z; Li L; Huang J; Yamada T; Sakai VG; Tan P; Hong L
    Struct Dyn; 2020 Sep; 7(5):054703. PubMed ID: 33094127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradual Crossover from Subdiffusion to Normal Diffusion: A Many-Body Effect in Protein Surface Water.
    Tan P; Liang Y; Xu Q; Mamontov E; Li J; Xing X; Hong L
    Phys Rev Lett; 2018 Jun; 120(24):248101. PubMed ID: 29956983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein dynamics in solution and powder measured by incoherent elastic neutron scattering: the influence of Q-range and energy resolution.
    Gabel F
    Eur Biophys J; 2005 Feb; 34(1):1-12. PubMed ID: 15378211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous and anisotropic nanoscale diffusion of hydration water molecules in fluid lipid membranes.
    Toppozini L; Roosen-Runge F; Bewley RI; Dalgliesh RM; Perring T; Seydel T; Glyde HR; García Sakai V; Rheinstädter MC
    Soft Matter; 2015 Nov; 11(42):8354-71. PubMed ID: 26338138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo measurement of internal and global macromolecular motions in Escherichia coli.
    Jasnin M; Moulin M; Haertlein M; Zaccai G; Tehei M
    Biophys J; 2008 Jul; 95(2):857-64. PubMed ID: 18359790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the internal dynamics of two globular proteins from dry powder to solution.
    Pérez J; Zanotti JM; Durand D
    Biophys J; 1999 Jul; 77(1):454-69. PubMed ID: 10388771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations.
    Malo de Molina P; Alvarez F; Frick B; Wildes A; Arbe A; Colmenero J
    Phys Chem Chem Phys; 2017 Oct; 19(40):27739-27754. PubMed ID: 28984889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulations of a Powder Model of the Intrinsically Disordered Protein Tau.
    Fichou Y; Heyden M; Zaccai G; Weik M; Tobias DJ
    J Phys Chem B; 2015 Oct; 119(39):12580-9. PubMed ID: 26351734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of hydration water on the dynamics of side chains of hydrophobic peptides: from dry powder to highly concentrated solutions.
    Russo D; Teixeira J; Ollivier J
    J Chem Phys; 2009 Jun; 130(23):235101. PubMed ID: 19548762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hydration water on protein methyl group dynamics in solution.
    Russo D; Hura GL; Copley JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):040902. PubMed ID: 17500858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations.
    Harpham MR; Ladanyi BM; Levinger NE; Herwig KW
    J Chem Phys; 2004 Oct; 121(16):7855-68. PubMed ID: 15485248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells.
    Basak S; Sengupta S; Chattopadhyay K
    Biophys Rev; 2019 Dec; 11(6):851-872. PubMed ID: 31444739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments.
    Tarek M; Tobias DJ
    Biophys J; 2000 Dec; 79(6):3244-57. PubMed ID: 11106628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water sub-diffusion in membranes for fuel cells.
    Berrod Q; Hanot S; Guillermo A; Mossa S; Lyonnard S
    Sci Rep; 2017 Aug; 7(1):8326. PubMed ID: 28827621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes.
    Yang J; Calero C; Martí J
    J Chem Phys; 2014 Mar; 140(10):104901. PubMed ID: 24628199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen exchange of lysozyme powders. Hydration dependence of internal motions.
    Schinkel JE; Downer NW; Rupley JA
    Biochemistry; 1985 Jan; 24(2):352-66. PubMed ID: 3978078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of
    Chen P; Terenzi C; Furó I; Berglund LA; Wohlert J
    Biomacromolecules; 2018 Jul; 19(7):2567-2579. PubMed ID: 29688710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic diffusion in hydrated encysted eggs of brine shrimp.
    Mamontov E
    Biochim Biophys Acta Gen Subj; 2017 Sep; 1861(9):2382-2390. PubMed ID: 28549919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further evidence that interfacial water is the main "driving force" of protein dynamics: a neutron scattering study on perdeuterated C-phycocyanin.
    Combet S; Zanotti JM
    Phys Chem Chem Phys; 2012 Apr; 14(14):4927-34. PubMed ID: 22388956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational motion of hydration water on protein surface.
    Hanafusa N
    Physiologie; 1989; 26(4):267-74. PubMed ID: 2517652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.