These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33094306)

  • 1. Microfluidic devices powered by integrated elasto-magnetic pumps.
    Binsley JL; Martin EL; Myers TO; Pagliara S; Ogrin FY
    Lab Chip; 2020 Nov; 20(22):4285-4295. PubMed ID: 33094306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of flexible Purcell-like integrated microfluidic pumps.
    Binsley JL; Pagliara S; Ogrin FY
    J Appl Phys; 2022 Oct; 132(16):164701. PubMed ID: 36313737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Miniaturized Archimedean Screw Pump for High-Viscosity Fluid Pumping in Microfluidics.
    Gucluer S
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled artificial cilia.
    Vilfan M; Potocnik A; Kavcic B; Osterman N; Poberaj I; Vilfan A; Babic D
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):1844-7. PubMed ID: 19934055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Patterned Magnetic Particles in Microchannels and Their Application in Micromixers.
    Li T; Yang C; Shao Z; Chen Y; Zheng J; Yang J; Hu N
    Biosensors (Basel); 2024 Aug; 14(9):. PubMed ID: 39329783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
    Xiang N; Ni Z; Yi H
    Electrophoresis; 2018 Jan; 39(2):417-424. PubMed ID: 28990196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-activated microfluidic rotary devices for pumping and mixing.
    Tseng HY; Wang CH; Lin WY; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional microfluidic pumping using an array of magnetic Janus microspheres rotating around magnetic disks.
    van den Beld WT; Cadena NL; Bomer J; de Weerd EL; Abelmann L; van den Berg A; Eijkel JC
    Lab Chip; 2015 Jul; 15(13):2872-8. PubMed ID: 26030131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices.
    Park J; Han DH; Park JK
    Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip.
    Yeh EC; Fu CC; Hu L; Thakur R; Feng J; Lee LP
    Sci Adv; 2017 Mar; 3(3):e1501645. PubMed ID: 28345028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deterministic Lateral Displacement-Based Separation of Magnetic Beads and Its Applications of Antibody Recognition.
    Zhang H; Zeng J; Han D; Deng J; Hu N; Zheng X; Yang J
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.
    Kokalj T; Park Y; Vencelj M; Jenko M; Lee LP
    Lab Chip; 2014 Nov; 14(22):4329-33. PubMed ID: 25231831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic use of electroosmotic flow and magnetic forces for nucleic acid extraction.
    Deraney RN; Schneider L; Tripathi A
    Analyst; 2020 Mar; 145(6):2412-2419. PubMed ID: 32057055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.
    Chen Y; Chan HN; Michael SA; Shen Y; Chen Y; Tian Q; Huang L; Wu H
    Lab Chip; 2017 Feb; 17(4):653-662. PubMed ID: 28112765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuel cell-powered microfluidic platform for lab-on-a-chip applications.
    Esquivel JP; Castellarnau M; Senn T; Löchel B; Samitier J; Sabaté N
    Lab Chip; 2012 Jan; 12(1):74-9. PubMed ID: 22072241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabricating High-viscosity Droplets using Microfluidic Capillary Device with Phase-inversion Co-flow Structure.
    Li J; Man J; Li Z; Chen H
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated microdroplet passive pumping platform for high-speed and packeted microfluidic flow applications.
    Resto PJ; Mogen BJ; Berthier E; Williams JC
    Lab Chip; 2010 Jan; 10(1):23-6. PubMed ID: 20024045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction: Microfluidic devices powered by integrated elasto-magnetic pumps.
    Binsley JL; Martin EL; Myers TO; Pagliara S; Ogrin FY
    Lab Chip; 2021 Aug; 21(15):3019-3020. PubMed ID: 34165486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput microfluidic device for single cell analysis using multiple integrated soft lithographic pumps.
    Patabadige DE; Mickleburgh T; Ferris L; Brummer G; Culbertson AH; Culbertson CT
    Electrophoresis; 2016 May; 37(10):1337-44. PubMed ID: 26887846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device.
    Zeng L; Chen X; Du J; Yu Z; Zhang R; Zhang Y; Yang H
    Nanoscale; 2021 Feb; 13(7):4029-4037. PubMed ID: 33533377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.