These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae. Vanoni M; Vai M; Popolo L; Alberghina L J Bacteriol; 1983 Dec; 156(3):1282-91. PubMed ID: 6358196 [TBL] [Abstract][Full Text] [Related]
4. Sensitivity of flow cytometric data to variations in cell cycle parameters. Ubezio P; Rossotti A Cell Tissue Kinet; 1987 Sep; 20(5):507-17. PubMed ID: 3450399 [TBL] [Abstract][Full Text] [Related]
6. Growth and the cell cycle of the yeast Saccharomyces cerevisiae. II. Relief of cell-cycle constraints allows accelerated cell divisions. Singer RA; Johnston GC Exp Cell Res; 1983 Nov; 149(1):15-26. PubMed ID: 6357813 [TBL] [Abstract][Full Text] [Related]
7. Stationary phase in Saccharomyces cerevisiae. Werner-Washburne M; Braun EL; Crawford ME; Peck VM Mol Microbiol; 1996 Mar; 19(6):1159-66. PubMed ID: 8730858 [TBL] [Abstract][Full Text] [Related]
8. A bimolecular mechanism for the cell size control of the cell cycle. Alberghina L; Martegani E; Mariani L; Bortolan G Biosystems; 1983-1984; 16(3-4):297-305. PubMed ID: 6370331 [TBL] [Abstract][Full Text] [Related]
9. Estrogen can regulate the cell cycle in the early G1 phase of yeast by increasing the amount of adenylate cyclase mRNA. Tanaka S; Hasegawa S; Hishinuma F; Kurata S Cell; 1989 May; 57(4):675-81. PubMed ID: 2541920 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the cell cycle in eukaryotic cells. Yanishevsky RM; Stein GH Int Rev Cytol; 1981; 69():223-59. PubMed ID: 7012067 [No Abstract] [Full Text] [Related]
11. Yeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle. Wei W; Nurse P; Broek D Cancer Res; 1993 Apr; 53(8):1867-70. PubMed ID: 8467507 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Cell Cycle Progression in Saccharomyces cerevisiae Using the Budding Index and Tubulin Staining. Muñoz-Barrera M; Monje-Casas F Methods Mol Biol; 2017; 1505():35-44. PubMed ID: 27826854 [TBL] [Abstract][Full Text] [Related]
15. Influence of the existence of a resting state on the probability of cell division in culture. Hirsch HR J Theor Biol; 1983 Feb; 100(3):399-410. PubMed ID: 6834863 [TBL] [Abstract][Full Text] [Related]
16. Replication fork rate and origin activation during the S phase of Saccharomyces cerevisiae. Rivin CJ; Fangman WL J Cell Biol; 1980 Apr; 85(1):108-15. PubMed ID: 6767729 [TBL] [Abstract][Full Text] [Related]
17. Growth and the DNA-division sequence in the yeast Saccharomyces cerevisiae. Singer RA; Johnston GC Exp Cell Res; 1985 Apr; 157(2):387-96. PubMed ID: 3884347 [TBL] [Abstract][Full Text] [Related]
18. Cell proliferation kinetics of MCF-7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau-phase cells. Sutherland RL; Hall RE; Taylor IW Cancer Res; 1983 Sep; 43(9):3998-4006. PubMed ID: 6871841 [TBL] [Abstract][Full Text] [Related]
19. Guanylic nucleotide starvation affects Saccharomyces cerevisiae mother-daughter separation and may be a signal for entry into quiescence. Sagot I; Schaeffer J; Daignan-Fornier B BMC Cell Biol; 2005 May; 6(1):24. PubMed ID: 15869715 [TBL] [Abstract][Full Text] [Related]
20. Intracellular and extracellular levels of cyclic AMP during the cell cycle of Saccharomyces cerevisiae. Smith ME; Dickinson JR; Wheals AE Yeast; 1990; 6(1):53-60. PubMed ID: 2156391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]