These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 33094923)
21. S100A8/A9 in Inflammation. Wang S; Song R; Wang Z; Jing Z; Wang S; Ma J Front Immunol; 2018; 9():1298. PubMed ID: 29942307 [TBL] [Abstract][Full Text] [Related]
22. The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis. Melero-Jerez C; Alonso-Gómez A; Moñivas E; Lebrón-Galán R; Machín-Díaz I; de Castro F; Clemente D Neurobiol Dis; 2020 Jul; 140():104869. PubMed ID: 32278882 [TBL] [Abstract][Full Text] [Related]
23. The receptor for advanced glycation endproducts (RAGE) decreases survival of tumor-bearing mice by enhancing the generation of lung metastasis-associated myeloid-derived suppressor cells. Wuren T; Huecksteadt T; Beck E; Warren K; Hoidal J; Ostrand-Rosenberg S; Sanders K Cell Immunol; 2021 Jul; 365():104379. PubMed ID: 34038758 [TBL] [Abstract][Full Text] [Related]
24. Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Sade-Feldman M; Kanterman J; Ish-Shalom E; Elnekave M; Horwitz E; Baniyash M Immunity; 2013 Mar; 38(3):541-54. PubMed ID: 23477736 [TBL] [Abstract][Full Text] [Related]
25. Detection of Circulating and Tissue Myeloid-Derived Suppressor Cells (MDSC) by Flow Cytometry. Sanchez-Pino MD Methods Mol Biol; 2022; 2422():247-261. PubMed ID: 34859411 [TBL] [Abstract][Full Text] [Related]
26. Presence of S100A8/Gr1-Positive Myeloid-Derived Suppressor Cells in Primary Tumors and Visceral Organs Invaded by Breast Carcinoma Cells. Tanriover G; Eyinc MB; Aliyev E; Dilmac S; Erin N Clin Breast Cancer; 2018 Oct; 18(5):e1067-e1076. PubMed ID: 29804651 [TBL] [Abstract][Full Text] [Related]
27. The Measure of DAMPs and a role for S100A8 in recruiting suppressor cells in breast cancer lung metastasis. Vrakas CN; O'Sullivan RM; Evans SE; Ingram DA; Jones CB; Phuong T; Kurt RA Immunol Invest; 2015; 44(2):174-88. PubMed ID: 25255046 [TBL] [Abstract][Full Text] [Related]
28. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model. Jiang Q; Duan J; Van Kaer L; Yang G Aging Dis; 2024 May; 15(3):1329-1343. PubMed ID: 37307825 [TBL] [Abstract][Full Text] [Related]
29. Beneficial Immune Effects of Myeloid-Related Proteins in Kidney Transplant Rejection. Rekers NV; Bajema IM; Mallat MJ; Petersen B; Anholts JD; Swings GM; van Miert PP; Kerkhoff C; Roth J; Popp D; van Groningen MC; Baeten D; Goemaere N; Kraaij MD; Zandbergen M; Heidt S; van Kooten C; de Fijter JW; Claas FH; Eikmans M Am J Transplant; 2016 May; 16(5):1441-55. PubMed ID: 26607974 [TBL] [Abstract][Full Text] [Related]
30. Myeloid-Derived Suppressor Cell-Derived Arginase-1 Oppositely Modulates IL-17A and IL-17F Through the ESR/STAT3 Pathway During Colitis in Mice. Ma Z; Zhen Y; Hu C; Yi H Front Immunol; 2020; 11():687. PubMed ID: 32391010 [TBL] [Abstract][Full Text] [Related]
31. Inhibition of endogenous activated protein C attenuates experimental autoimmune encephalomyelitis by inducing myeloid-derived suppressor cells. Alabanza LM; Esmon NL; Esmon CT; Bynoe MS J Immunol; 2013 Oct; 191(7):3764-77. PubMed ID: 23997223 [TBL] [Abstract][Full Text] [Related]
33. Induction of myelodysplasia by myeloid-derived suppressor cells. Chen X; Eksioglu EA; Zhou J; Zhang L; Djeu J; Fortenbery N; Epling-Burnette P; Van Bijnen S; Dolstra H; Cannon J; Youn JI; Donatelli SS; Qin D; De Witte T; Tao J; Wang H; Cheng P; Gabrilovich DI; List A; Wei S J Clin Invest; 2013 Nov; 123(11):4595-611. PubMed ID: 24216507 [TBL] [Abstract][Full Text] [Related]
34. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. Araki K; Kinoshita R; Tomonobu N; Gohara Y; Tomida S; Takahashi Y; Senoo S; Taniguchi A; Itano J; Yamamoto KI; Murata H; Suzawa K; Shien K; Yamamoto H; Okazaki M; Sugimoto S; Ichimura K; Nishibori M; Miyahara N; Toyooka S; Sakaguchi M J Mol Med (Berl); 2021 Jan; 99(1):131-145. PubMed ID: 33169236 [TBL] [Abstract][Full Text] [Related]
35. Arginase-1 is neither constitutively expressed in nor required for myeloid-derived suppressor cell-mediated inhibition of T-cell proliferation. Bian Z; Abdelaal AM; Shi L; Liang H; Xiong L; Kidder K; Venkataramani M; Culpepper C; Zen K; Liu Y Eur J Immunol; 2018 Jun; 48(6):1046-1058. PubMed ID: 29488625 [TBL] [Abstract][Full Text] [Related]
36. GIP regulates inflammation and body weight by restraining myeloid-cell-derived S100A8/A9. Mantelmacher FD; Zvibel I; Cohen K; Epshtein A; Pasmanik-Chor M; Vogl T; Kuperman Y; Weiss S; Drucker DJ; Varol C; Fishman S Nat Metab; 2019 Jan; 1(1):58-69. PubMed ID: 32694806 [TBL] [Abstract][Full Text] [Related]
37. Mitoxantrone: a review of its use in multiple sclerosis. Scott LJ; Figgitt DP CNS Drugs; 2004; 18(6):379-96. PubMed ID: 15089110 [TBL] [Abstract][Full Text] [Related]
38. The Cxcr2 Kao KD; Grasberger H; El-Zaatari M Front Immunol; 2023; 14():1147695. PubMed ID: 37744359 [TBL] [Abstract][Full Text] [Related]
39. Immunosuppressive effects and mechanisms of three myeloid-derived suppressor cells subsets including monocytic-myeloid-derived suppressor cells, granulocytic-myeloid-derived suppressor cells, and immature-myeloid-derived suppressor cells. Nagatani Y; Funakoshi Y; Suto H; Imamura Y; Toyoda M; Kiyota N; Yamashita K; Minami H J Cancer Res Ther; 2021; 17(4):1093-1100. PubMed ID: 34528569 [TBL] [Abstract][Full Text] [Related]
40. How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Bruger AM; Dorhoi A; Esendagli G; Barczyk-Kahlert K; van der Bruggen P; Lipoldova M; Perecko T; Santibanez J; Saraiva M; Van Ginderachter JA; Brandau S Cancer Immunol Immunother; 2019 Apr; 68(4):631-644. PubMed ID: 29785656 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]