These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33095068)

  • 1. Obesity effects on pedestrian lower extremity injuries in vehicle-to-pedestrian impacts: A numerical investigation using human body models.
    Tang J; Zhou Q; Nie B; Hu J
    Traffic Inj Prev; 2020; 21(8):569-574. PubMed ID: 33095068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk.
    Han Y; Yang J; Mizuno K; Matsui Y
    Traffic Inj Prev; 2012 Sep; 13(5):507-18. PubMed ID: 22931181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element reconstruction of a vehicle-to-pedestrian impact.
    Costa C; Aira J; Koya B; Decker W; Sink J; Withers S; Beal R; Schieffer S; Gayzik S; Stitzel J; Weaver A
    Traffic Inj Prev; 2020 Oct; 21(sup1):S145-S147. PubMed ID: 33147058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of kinematic behavior of pedestrians/cyclists in vehicle collisions using impulse.
    Murano S; Kong C; Mizuno K; Ito D; Nakane D; Wakabayashi A
    Traffic Inj Prev; 2020; 21(5):335-340. PubMed ID: 32378981
    [No Abstract]   [Full Text] [Related]  

  • 5. The influence of gait stance on pedestrian lower limb injury risk.
    Li G; Yang J; Simms C
    Accid Anal Prev; 2015 Dec; 85():83-92. PubMed ID: 26397198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of lower extremity postures on kinematics and injuries of cyclists in vehicle side collisions.
    Mizuno K; Yamada H; Mizuguchi H; Ito D; Han Y; Hitosugi M
    Traffic Inj Prev; 2016 Aug; 17(6):618-24. PubMed ID: 26760737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restraint systems considering occupant diversity and pre-crash posture.
    Boyle K; Fanta A; Reed MP; Fischer K; Smith A; Adler A; Hu J
    Traffic Inj Prev; 2020 Oct; 21(sup1):S31-S36. PubMed ID: 33709859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active muscle response contributes to increased injury risk of lower extremity in occupant-knee airbag interaction.
    Nie B; Sathyanarayan D; Ye X; Crandall JR; Panzer MB
    Traffic Inj Prev; 2018 Feb; 19(sup1):S76-S82. PubMed ID: 29584491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A virtual test system representing the distribution of pedestrian impact configurations for future vehicle front-end optimization.
    Li G; Yang J; Simms C
    Traffic Inj Prev; 2016 Jul; 17(5):515-23. PubMed ID: 26786188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of lower extremity injuries in car-pedestrian crashes - real-world accident study.
    Panday P; Vikram A; Chawla A; Mukherjee S
    Traffic Inj Prev; 2021; 22(2):173-176. PubMed ID: 33528273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of pedestrian injuries caused due to impacts with powered 2-wheelers in India.
    Jayaraman A; Soni J; Baladaniya S; Rajaraman R; Patel M; Padmanaban J
    Traffic Inj Prev; 2020 Oct; 21(sup1):S107-S111. PubMed ID: 33433239
    [No Abstract]   [Full Text] [Related]  

  • 12. A finite element model of a six-year-old child for simulating pedestrian accidents.
    Meng Y; Pak W; Guleyupoglu B; Koya B; Gayzik FS; Untaroiu CD
    Accid Anal Prev; 2017 Jan; 98():206-213. PubMed ID: 27760408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical impact testing of synthetic versus human cadaveric tibias for predicting injury risk during pedestrian-vehicle collisions.
    Cameron MW; Schemitsch EH; Zdero R; Quenneville CE
    Traffic Inj Prev; 2020; 21(2):163-168. PubMed ID: 32023127
    [No Abstract]   [Full Text] [Related]  

  • 14. [The significance of the results of crash-tests with the use of the models of the pedestrians' lower extremities for the prevention of the traffic road accidents].
    Smirenin SA; Fetisov VA; Grigoryan VG; Gusarov AA; Kucheryavets YO
    Sud Med Ekspert; 2017; 60(3):13-18. PubMed ID: 28656947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of finite element human body models for use in a standardized protocol for pedestrian safety assessment.
    Decker W; Koya B; Pak W; Untaroiu CD; Gayzik FS
    Traffic Inj Prev; 2019; 20(sup2):S32-S36. PubMed ID: 31356121
    [No Abstract]   [Full Text] [Related]  

  • 16. Frontal crash simulations using parametric human models representing a diverse population.
    Hu J; Zhang K; Reed MP; Wang JT; Neal M; Lin CH
    Traffic Inj Prev; 2019; 20(sup1):S97-S105. PubMed ID: 31381451
    [No Abstract]   [Full Text] [Related]  

  • 17. A detailed finite element model of a mid-sized male for the investigation of traffic pedestrian accidents.
    Grindle D; Pak W; Guleyupoglu B; Koya B; Gayzik FS; Song E; Untaroiu C
    Proc Inst Mech Eng H; 2021 Mar; 235(3):300-313. PubMed ID: 33297871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of driver lower extremity injuries in finite element frontal crash reconstruction.
    Ye X; Gaewsky JP; Miller LE; Jones DA; Kelley ME; Suhey JD; Koya B; Weaver AA; Stitzel JD
    Traffic Inj Prev; 2018 Feb; 19(sup1):S21-S28. PubMed ID: 29584493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of pedestrian brain injury due to vehicle impact using computational biomechanics models: Are head-only models sufficient?
    Wang F; Yu C; Wang B; Li G; Miller K; Wittek A
    Traffic Inj Prev; 2020; 21(1):102-107. PubMed ID: 31770038
    [No Abstract]   [Full Text] [Related]  

  • 20. Could an isolated human body lower limb model predict leg biomechanical response of Chinese pedestrians in vehicle collisions?
    Ma H; Mao Z; Li G; Yan L; Mo F
    Acta Bioeng Biomech; 2020; 22(3):117-129. PubMed ID: 33518731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.