BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33095103)

  • 41. Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins.
    Smith JR; de Billy E; Hobbs S; Powers M; Prodromou C; Pearl L; Clarke PA; Workman P
    Oncogene; 2015 Jan; 34(1):15-26. PubMed ID: 24292678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37.
    Roiniotis J; Masendycz P; Ho S; Scholz GM
    Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hsp90 and Cdc37 -- a chaperone cancer conspiracy.
    Pearl LH
    Curr Opin Genet Dev; 2005 Feb; 15(1):55-61. PubMed ID: 15661534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cdc37 as a co-chaperone to Hsp90.
    Calderwood SK
    Subcell Biochem; 2015; 78():103-12. PubMed ID: 25487018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37.
    Shao J; Prince T; Hartson SD; Matts RL
    J Biol Chem; 2003 Oct; 278(40):38117-20. PubMed ID: 12930845
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Serine/Threonine Kinase Unc-51-like Kinase-1 (Ulk1) Phosphorylates the Co-chaperone Cell Division Cycle Protein 37 (Cdc37) and Thereby Disrupts the Stability of Cdc37 Client Proteins.
    Li R; Yuan F; Fu W; Zhang L; Zhang N; Wang Y; Ma K; Li X; Wang L; Zhu WG; Zhao Y
    J Biol Chem; 2017 Feb; 292(7):2830-2841. PubMed ID: 28073914
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeting the HSP90-CDC37-kinase chaperone cycle: A promising therapeutic strategy for cancer.
    Wang L; Zhang Q; You Q
    Med Res Rev; 2022 Jan; 42(1):156-182. PubMed ID: 33846988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cdc37-Hsp90 complexes are responsive to nucleotide-induced conformational changes and binding of further cofactors.
    Gaiser AM; Kretzschmar A; Richter K
    J Biol Chem; 2010 Dec; 285(52):40921-32. PubMed ID: 20880838
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Hsp90 kinase co-chaperone Cdc37 regulates tau stability and phosphorylation dynamics.
    Jinwal UK; Trotter JH; Abisambra JF; Koren J; Lawson LY; Vestal GD; O'Leary JC; Johnson AG; Jin Y; Jones JR; Li Q; Weeber EJ; Dickey CA
    J Biol Chem; 2011 May; 286(19):16976-83. PubMed ID: 21367866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell surface Cdc37 participates in extracellular HSP90 mediated cancer cell invasion.
    El Hamidieh A; Grammatikakis N; Patsavoudi E
    PLoS One; 2012; 7(8):e42722. PubMed ID: 22912728
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase.
    Verba KA; Wang RY; Arakawa A; Liu Y; Shirouzu M; Yokoyama S; Agard DA
    Science; 2016 Jun; 352(6293):1542-7. PubMed ID: 27339980
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rational design, synthesis and structural characterization of peptides and peptidomimetics to target Hsp90/Cdc37 interaction for treating hepatocellular carcinoma.
    Sukumaran S; Tan M; Ben-Uliel SF; Zhang H; De Zotti M; Chua MS; So SK; Qvit N
    Comput Struct Biotechnol J; 2023; 21():3159-3172. PubMed ID: 37304004
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90.
    Zhao M; Ma J; Zhu HY; Zhang XH; Du ZY; Xu YJ; Yu XD
    Mol Cancer; 2011 Aug; 10():104. PubMed ID: 21871133
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol.
    Sreeramulu S; Gande SL; Göbel M; Schwalbe H
    Angew Chem Int Ed Engl; 2009; 48(32):5853-5. PubMed ID: 19585625
    [No Abstract]   [Full Text] [Related]  

  • 55. p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site.
    Silverstein AM; Grammatikakis N; Cochran BH; Chinkers M; Pratt WB
    J Biol Chem; 1998 Aug; 273(32):20090-5. PubMed ID: 9685350
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37.
    Prince T; Matts RL
    J Biol Chem; 2004 Sep; 279(38):39975-81. PubMed ID: 15258137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37.
    Keramisanou D; Aboalroub A; Zhang Z; Liu W; Marshall D; Diviney A; Larsen RW; Landgraf R; Gelis I
    Mol Cell; 2016 Apr; 62(2):260-271. PubMed ID: 27105117
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hsp90 regulates p50(cdc37) function during the biogenesis of the activeconformation of the heme-regulated eIF2 alpha kinase.
    Shao J; Grammatikakis N; Scroggins BT; Uma S; Huang W; Chen JJ; Hartson SD; Matts RL
    J Biol Chem; 2001 Jan; 276(1):206-14. PubMed ID: 11036079
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HSP-90/kinase complexes are stabilized by the large PPIase FKB-6.
    Sima S; Barkovits K; Marcus K; Schmauder L; Hacker SM; Hellwig N; Morgner N; Richter K
    Sci Rep; 2021 Jun; 11(1):12347. PubMed ID: 34117308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stability of the Peutz-Jeghers syndrome kinase LKB1 requires its binding to the molecular chaperones Hsp90/Cdc37.
    Nony P; Gaude H; Rossel M; Fournier L; Rouault JP; Billaud M
    Oncogene; 2003 Dec; 22(57):9165-75. PubMed ID: 14668798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.