These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33095126)

  • 21. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation.
    Demirci S; Doğan A; Aydın S; Dülger EÇ; Şahin F
    Mol Cell Biochem; 2016 Jun; 417(1-2):119-33. PubMed ID: 27206737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone marrow cell mobilization by the systemic use of granulocyte colony-stimulating factor (GCSF) improves wound bed preparation.
    Iwamoto S; Lin X; Ramirez R; Carson P; Fiore D; Goodrich J; Yufit T; Falanga V
    Int J Low Extrem Wounds; 2013 Dec; 12(4):256-64. PubMed ID: 24275756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled Delivery of Bioactive Molecules for the Treatment of Chronic Wounds.
    Anjana J; Rajan VK; Biswas R; Jayakumar R
    Curr Pharm Des; 2017; 23(24):3529-3537. PubMed ID: 28472912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy.
    Gao M; Nguyen TT; Suckow MA; Wolter WR; Gooyit M; Mobashery S; Chang M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15226-31. PubMed ID: 26598687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing.
    Johnson NR; Wang Y
    J Control Release; 2013 Mar; 166(2):124-9. PubMed ID: 23154193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid fusion protein as a dual protease inhibitor for the healing of chronic wounds.
    Strauss G; Koria P
    Biotechnol Prog; 2021 Nov; 37(6):e3209. PubMed ID: 34486249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice.
    Losi P; Briganti E; Errico C; Lisella A; Sanguinetti E; Chiellini F; Soldani G
    Acta Biomater; 2013 Aug; 9(8):7814-21. PubMed ID: 23603001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings.
    Uccioli L; Izzo V; Meloni M; Vainieri E; Ruotolo V; Giurato L
    J Wound Care; 2015 Apr; 24(4 Suppl):35-42. PubMed ID: 25853647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide-releasing nanoparticles accelerate wound healing in NOD-SCID mice.
    Blecher K; Martinez LR; Tuckman-Vernon C; Nacharaju P; Schairer D; Chouake J; Friedman JM; Alfieri A; Guha C; Nosanchuk JD; Friedman AJ
    Nanomedicine; 2012 Nov; 8(8):1364-71. PubMed ID: 22406184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Matrix- and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine.
    Sheets AR; Massey CJ; Cronk SM; Iafrati MD; Herman IM
    J Transl Med; 2016 Jul; 14(1):197. PubMed ID: 27369317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delivery of Flightless I Neutralizing Antibody from Porous Silicon Nanoparticles Improves Wound Healing in Diabetic Mice.
    Turner CT; McInnes SJ; Melville E; Cowin AJ; Voelcker NH
    Adv Healthc Mater; 2017 Jan; 6(2):. PubMed ID: 27869355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticles for the Treatment of Wounds.
    Oyarzun-Ampuero F; Vidal A; Concha M; Morales J; Orellana S; Moreno-Villoslada I
    Curr Pharm Des; 2015; 21(29):4329-41. PubMed ID: 26323420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth factors in wound healing: the present and the future?
    Dinh T; Braunagel S; Rosenblum BI
    Clin Podiatr Med Surg; 2015 Jan; 32(1):109-19. PubMed ID: 25440422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Advances in the research of delivery system of growth factor and the gene for promoting wound healing].
    Liu T; Li HH; Sheng JJ; Zhu SH
    Zhonghua Shao Shang Za Zhi; 2018 Aug; 34(8):566-569. PubMed ID: 30157565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Priming of mononuclear cells with a combination of growth factors enhances wound healing via high angiogenic and engraftment capabilities.
    Jin E; Kim JM; Kim SW
    J Cell Mol Med; 2013 Dec; 17(12):1644-51. PubMed ID: 24118840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth factor-functionalized silk membranes support wound healing in vitro.
    Bienert M; Hoss M; Bartneck M; Weinandy S; Böbel M; Jockenhövel S; Knüchel R; Pottbacker K; Wöltje M; Jahnen-Dechent W; Neuss S
    Biomed Mater; 2017 Aug; 12(4):045023. PubMed ID: 28573979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing.
    Henshaw FR; Boughton P; Lo L; McLennan SV; Twigg SM
    J Diabetes Res; 2015; 2015():236238. PubMed ID: 25789327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Syndecan-4 enhances PDGF-BB activity in diabetic wound healing.
    Das S; Majid M; Baker AB
    Acta Biomater; 2016 Sep; 42():56-65. PubMed ID: 27381525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of epigallocatechin gallate, ascorbic acid, gelatin, chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice.
    Sun M; Xie Q; Cai X; Liu Z; Wang Y; Dong X; Xu Y
    Int J Biol Macromol; 2020 Apr; 148():777-784. PubMed ID: 31978475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Innovations in gene and growth factor delivery systems for diabetic wound healing.
    Laiva AL; O'Brien FJ; Keogh MB
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e296-e312. PubMed ID: 28482114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.