These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bacterial bioreporters for the detection of trace explosives: performance enhancement by DNA shuffling and random mutagenesis. Shpigel E; Shemer B; Elad T; Glozman A; Belkin S Appl Microbiol Biotechnol; 2021 May; 105(10):4329-4337. PubMed ID: 33942130 [TBL] [Abstract][Full Text] [Related]
3. A Portable Biosensor for 2,4-Dinitrotoluene Vapors. Prante M; Ude C; Große M; Raddatz L; Krings U; John G; Belkin S; Scheper T Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513956 [TBL] [Abstract][Full Text] [Related]
4. Enhancing DNT Detection by a Bacterial Bioreporter: Directed Evolution of the Transcriptional Activator YhaJ. Elad T; Shemer B; Simanowitz S; Kabessa Y; Mizrachi Y; Gold A; Shpigel E; Agranat AJ; Belkin S Front Bioeng Biotechnol; 2022; 10():821835. PubMed ID: 35237579 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide gene-deletion screening identifies mutations that significantly enhance explosives vapor detection by a microbial sensor. Shemer B; Shpigel E; Glozman A; Yagur-Kroll S; Kabessa Y; Agranat AJ; Belkin S N Biotechnol; 2020 Nov; 59():65-73. PubMed ID: 32622861 [TBL] [Abstract][Full Text] [Related]
6. Aerobic Transformation of 2,4-Dinitrotoluene by Escherichia coli and Its Implications for the Detection of Trace Explosives. Shemer B; Yagur-Kroll S; Hazan C; Belkin S Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222096 [TBL] [Abstract][Full Text] [Related]
7. Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells. Kabessa Y; Eyal O; Bar-On O; Korouma V; Yagur-Kroll S; Belkin S; Agranat AJ Biosens Bioelectron; 2016 May; 79():784-8. PubMed ID: 26774094 [TBL] [Abstract][Full Text] [Related]
8. Genetically engineered microorganisms for the detection of explosives' residues. Shemer B; Palevsky N; Yagur-Kroll S; Belkin S Front Microbiol; 2015; 6():1175. PubMed ID: 26579085 [TBL] [Abstract][Full Text] [Related]
9. An autonomous bioluminescent bacterial biosensor module for outdoor sensor networks, and its application for the detection of buried explosives. Agranat AJ; Kabessa Y; Shemer B; Shpigel E; Schwartsglass O; Atamneh L; Uziel Y; Ejzenberg M; Mizrachi Y; Garcia Y; Perepelitsa G; Belkin S Biosens Bioelectron; 2021 Aug; 185():113253. PubMed ID: 33930754 [TBL] [Abstract][Full Text] [Related]
10. Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution. Yagur-Kroll S; Amiel E; Rosen R; Belkin S Appl Microbiol Biotechnol; 2015 Sep; 99(17):7177-88. PubMed ID: 25981994 [TBL] [Abstract][Full Text] [Related]
11. Introduction of quorum sensing elements into bacterial bioreporter circuits enhances explosives' detection capabilities. Shpigel E; Nathansohn S; Glozman A; Rosen R; Shemer B; Yagur-Kroll S; Elad T; Belkin S Eng Life Sci; 2022 Mar; 22(3-4):308-318. PubMed ID: 35382532 [TBL] [Abstract][Full Text] [Related]
13. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Yagur-Kroll S; Lalush C; Rosen R; Bachar N; Moskovitz Y; Belkin S Appl Microbiol Biotechnol; 2014 Jan; 98(2):885-95. PubMed ID: 23615740 [TBL] [Abstract][Full Text] [Related]
14. A bacterial bioreporter for the detection of 1,3,5-trinitro-1,3,5-triazinane (RDX). Lifshitz A; Shemer B; Hazan C; Shpigel E; Belkin S Anal Bioanal Chem; 2022 Jul; 414(18):5329-5336. PubMed ID: 34622323 [TBL] [Abstract][Full Text] [Related]
15. Implementation of Combinatorial Genetic and Microenvironmental Engineering to Microbial-Based Field-Deployable Microbead Biosensors for Highly Sensitive and Remote Chemical Detection. Lee K; Choi S; Kim C; Kang WS; Son W; Bae SC; Oh JW; Lee SK; Cha C ACS Sens; 2019 Oct; 4(10):2716-2723. PubMed ID: 31512857 [TBL] [Abstract][Full Text] [Related]
16. An enhanced fluorescence detection of a nitroaromatic compound using bacteria embedded in porous poly lactic-co-glycolic acid microbeads. Qiao T; Kim S; Lee W; Lee H Analyst; 2021 Jul; 146(14):4615-4621. PubMed ID: 34164639 [TBL] [Abstract][Full Text] [Related]
17. Quantification and aging of the post-blast residue of TNT landmines. Oxley JC; Smith JL; Resende E; Pearce E J Forensic Sci; 2003 Jul; 48(4):742-53. PubMed ID: 12877289 [TBL] [Abstract][Full Text] [Related]
18. Controlled biological and biomimetic systems for landmine detection. Habib MK Biosens Bioelectron; 2007 Aug; 23(1):1-18. PubMed ID: 17662594 [TBL] [Abstract][Full Text] [Related]
19. Development of lycopene-based whole-cell biosensors for the visual detection of trace explosives and heavy metals. Li M; Lv S; Yang R; Chu X; Wang X; Wang Z; Peng L; Yang J Anal Chim Acta; 2023 Dec; 1283():341934. PubMed ID: 37977799 [TBL] [Abstract][Full Text] [Related]
20. A transcription factor-based bacterial biosensor system and its application for on-site detection of explosives. Wang Z; Ma R; Chen B; Yu X; Wang X; Zuo X; Liang B; Yang J Biosens Bioelectron; 2024 Jan; 244():115805. PubMed ID: 37948915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]