These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33095557)

  • 1. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision.
    Song B; Jiang Z; Liu Z; Wang Y; Liu F; Cronin SB; Yang H; Meng D; Chen B; Hu P; Schwartzberg AM; Cabrini S; Haas S; Wu W
    ACS Nano; 2020 Nov; 14(11):14769-14778. PubMed ID: 33095557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic dye-sensitized solar cells through collapsible gold nanofingers.
    Fang W; Hu P; Wu Z; Xiao Y; Sui Y; Pan D; Su G; Zhu M; Zhan P; Liu F; Wu W
    Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34034240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers.
    Song B; Yao Y; Groenewald RE; Wang Y; Liu H; Wang Y; Li Y; Liu F; Cronin SB; Schwartzberg AM; Cabrini S; Haas S; Wu W
    ACS Nano; 2017 Jun; 11(6):5836-5843. PubMed ID: 28599108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable SERS Enhancement via Sub-nanometer Gap Metasurfaces.
    Bauman SJ; Darweesh AA; Furr M; Magee M; Argyropoulos C; Herzog JB
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15541-15548. PubMed ID: 35344345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Plasmonics: Energy Transport Through Plasmonic Gap.
    Lee J; Jeon DJ; Yeo JS
    Adv Mater; 2021 Nov; 33(47):e2006606. PubMed ID: 33891781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement and quenching of plasmon-enhanced spectroscopy of single molecule confined in metallic nanoparticle dimers.
    Pei H; Zhao J; Peng W; Dai Q; Wei Y
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37769644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically Thin Boron Nitride as an Ideal Spacer for Metal-Enhanced Fluorescence.
    Gan W; Tserkezis C; Cai Q; Falin A; Mateti S; Nguyen M; Aharonovich I; Watanabe K; Taniguchi T; Huang F; Song L; Kong L; Chen Y; Li LH
    ACS Nano; 2019 Oct; 13(10):12184-12191. PubMed ID: 31577417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis.
    Mei Z; Tang L
    Anal Chem; 2017 Jan; 89(1):633-639. PubMed ID: 27991768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic metal nanostructures with extremely small features: new effects, fabrication and applications.
    Shi H; Zhu X; Zhang S; Wen G; Zheng M; Duan H
    Nanoscale Adv; 2021 Jul; 3(15):4349-4369. PubMed ID: 36133477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers.
    Xiang Q; Li Z; Zheng M; Liu Q; Chen Y; Yang L; Jiang T; Duan H
    Nanotechnology; 2018 Mar; 29(10):105301. PubMed ID: 29319003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon-enhanced and quenched two-photon excited fluorescence.
    Lin CY; Chiu KC; Chang CY; Chang SH; Guo TF; Chen SJ
    Opt Express; 2010 Jun; 18(12):12807-17. PubMed ID: 20588409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of plasmon emission and dynamics at the transition from classical to quantum coupling.
    Kravtsov V; Berweger S; Atkin JM; Raschke MB
    Nano Lett; 2014 Sep; 14(9):5270-5. PubMed ID: 25089501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
    Cai H; Meng Q; Zhao H; Li M; Dai Y; Lin Y; Ding H; Pan N; Tian Y; Luo Y; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20189-20195. PubMed ID: 29799180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection.
    Kim S; Mun C; Choi DG; Jung HS; Kim DH; Kim SH; Park SG
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32422860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging.
    Wang J; Moore J; Laulhe S; Nantz M; Achilefu S; Kang KA
    Nanotechnology; 2012 Mar; 23(9):095501. PubMed ID: 22327387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.