These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33095587)

  • 1. Freezing of Nanofluid Droplets on Superhydrophobic Surfaces.
    Li X; Yu J; Hu D; Li Q; Chen X
    Langmuir; 2020 Nov; 36(43):13034-13040. PubMed ID: 33095587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How different freezing morphologies of impacting droplets form.
    Fang WZ; Zhu F; Tao WQ; Yang C
    J Colloid Interface Sci; 2021 Feb; 584():403-410. PubMed ID: 33091865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting Process of Frozen Sessile Droplets on Superhydrophobic Surfaces.
    Cui J; Wang T; Che Z
    Langmuir; 2023 Oct; 39(41):14800-14810. PubMed ID: 37797346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability.
    Hu A; Yuan Q; Guo K; Wang Z; Liu D
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing Characteristics of a Water Droplet on a Multiscale Superhydrophobic Surface.
    Hatte S; Kant K; Pitchumani R
    Langmuir; 2023 Aug; 39(33):11898-11909. PubMed ID: 37552572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluid Droplet Impact on Rigid and Elastic Superhydrophobic Surfaces.
    Qian C; Li X; Li Q; Chen X
    ACS Omega; 2024 May; 9(20):22003-22015. PubMed ID: 38799373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast-freezing kinetics inside a droplet impacting on a cold surface.
    Kant P; Koldeweij RBJ; Harth K; van Limbeek MAJ; Lohse D
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2788-2794. PubMed ID: 31980522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofluid Drop Impact on Heated Surfaces.
    Ma X; Aldhaleai A; Liu L; Tsai PA
    Langmuir; 2024 Feb; ():. PubMed ID: 38316019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Condensation and freezing of droplets on superhydrophobic surfaces.
    Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D
    Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet freezing, docking, and the exchange of immiscible phase and surfactant around frozen droplets.
    Sgro AE; Chiu DT
    Lab Chip; 2010 Jul; 10(14):1873-7. PubMed ID: 20467690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retardation of freezing of precooled, impinged water droplets on glass surfaces with microgrooves and silane coating.
    Yonezawa S; Kasahara K; Waku T; Hagiwara Y
    J Chem Phys; 2022 Sep; 157(11):114701. PubMed ID: 36137786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove.
    Lu D; Zhao M; Zhang H; Yang Y; Zheng Y
    Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of superamphiphobic macrotextures on dynamics of viscous liquid droplets.
    Raiyan A; Mclaughlin TS; Annavarapu RK; Sojoudi H
    Sci Rep; 2018 Oct; 8(1):15344. PubMed ID: 30337604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact Behaviors on Superhydrophobic Surfaces for Water Droplets of Asymmetric Double-Chain Quaternary Ammonium Surfactants.
    Li H; Cai Z; Wang Y
    Langmuir; 2020 Nov; 36(46):14113-14122. PubMed ID: 33166156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.