These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33095587)

  • 21. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spreading characteristics of nanofluid droplets impacting onto a solid surface.
    Murshed SM; de Castro CA
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3427-33. PubMed ID: 21776720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drying behaviour of nanofluid sessile droplets on self-affine vis-à-vis corrugated nanorough surfaces.
    Rani D; Sarkar S
    Eur Phys J E Soft Matter; 2023 Nov; 46(11):113. PubMed ID: 37999793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spreading-splashing transition of nanofluid droplets on a smooth flat surface.
    Aksoy YT; Eneren P; Koos E; Vetrano MR
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):434-443. PubMed ID: 34411826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.
    Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS
    Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X; Wang P; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are superhydrophobic surfaces best for icephobicity?
    Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D
    Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictive model for ice formation on superhydrophobic surfaces.
    Bahadur V; Mishchenko L; Hatton B; Taylor JA; Aizenberg J; Krupenkin T
    Langmuir; 2011 Dec; 27(23):14143-50. PubMed ID: 21899285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface.
    Xu H; Chang C; Yi N; Tao P; Song C; Wu J; Deng T; Shang W
    ACS Omega; 2019 Oct; 4(18):17615-17622. PubMed ID: 31681868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unidirectional Freezing of Polymer Solution Droplets.
    Kharal SP; Louf JF
    Langmuir; 2024 Jan; 40(1):118-124. PubMed ID: 38154147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Surface Energy on Freezing Temperature of Water.
    Zhang Y; Anim-Danso E; Bekele S; Dhinojwala A
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17583-90. PubMed ID: 27314147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spontaneous self-dislodging of freezing water droplets and the role of wettability.
    Graeber G; Schutzius TM; Eghlidi H; Poulikakos D
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freezing-induced wetting transitions on superhydrophobic surfaces.
    Lambley H; Graeber G; Vogt R; Gaugler LC; Baumann E; Schutzius TM; Poulikakos D
    Nat Phys; 2023; 19(5):649-655. PubMed ID: 37205127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum.
    Ando K; Arakawa M; Terasaki A
    Phys Chem Chem Phys; 2018 Nov; 20(45):28435-28444. PubMed ID: 30406234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.