These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33095598)

  • 1. Optically Probing Tunable Band Topology in Atomic Monolayers.
    Xu G; Zhou T; Scharf B; Žutić I
    Phys Rev Lett; 2020 Oct; 125(15):157402. PubMed ID: 33095598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unifying Optical Selection Rules for Excitons in Two Dimensions: Band Topology and Winding Numbers.
    Cao T; Wu M; Louie SG
    Phys Rev Lett; 2018 Feb; 120(8):087402. PubMed ID: 29543006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervalley Excitonic Hybridization, Optical Selection Rules, and Imperfect Circular Dichroism in Monolayer h-BN.
    Zhang F; Ong CS; Ruan JW; Wu M; Shi XQ; Tang ZK; Louie SG
    Phys Rev Lett; 2022 Jan; 128(4):047402. PubMed ID: 35148132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and Excitonic Properties of MSi
    Woźniak T; Umm-E-Hani ; Faria Junior PE; Ramzan MS; Kuc AB
    Small; 2023 May; 19(19):e2206444. PubMed ID: 36772899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors.
    Niehues I; Schmidt R; Drüppel M; Marauhn P; Christiansen D; Selig M; Berghäuser G; Wigger D; Schneider R; Braasch L; Koch R; Castellanos-Gomez A; Kuhn T; Knorr A; Malic E; Rohlfing M; Michaelis de Vasconcellos S; Bratschitsch R
    Nano Lett; 2018 Mar; 18(3):1751-1757. PubMed ID: 29389133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons.
    Zhou Y; Scuri G; Wild DS; High AA; Dibos A; Jauregui LA; Shu C; De Greve K; Pistunova K; Joe AY; Taniguchi T; Watanabe K; Kim P; Lukin MD; Park H
    Nat Nanotechnol; 2017 Sep; 12(9):856-860. PubMed ID: 28650440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sizable Excitonic Effects Undermining the Photocatalytic Efficiency of β-Cu
    Wiktor J; Reshetnyak I; Strach M; Scarongella M; Buonsanti R; Pasquarello A
    J Phys Chem Lett; 2018 Oct; 9(19):5698-5703. PubMed ID: 30193068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitonic effects on the optical response of graphene and bilayer graphene.
    Yang L; Deslippe J; Park CH; Cohen ML; Louie SG
    Phys Rev Lett; 2009 Oct; 103(18):186802. PubMed ID: 19905823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valley-exchange coupling probed by angle-resolved photoluminescence.
    Thompson JJP; Brem S; Fang H; Antón-Solanas C; Han B; Shan H; Dash SP; Wieczorek W; Schneider C; Malic E
    Nanoscale Horiz; 2021 Dec; 7(1):77-84. PubMed ID: 34796891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlayer Coupling and Gate-Tunable Excitons in Transition Metal Dichalcogenide Heterostructures.
    Gao S; Yang L; Spataru CD
    Nano Lett; 2017 Dec; 17(12):7809-7813. PubMed ID: 29164895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster Formation Effect of Water on Pristine and Defective MoS
    Wang K; Paulus B
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36677982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonanalyticity, Valley Quantum Phases, and Lightlike Exciton Dispersion in Monolayer Transition Metal Dichalcogenides: Theory and First-Principles Calculations.
    Qiu DY; Cao T; Louie SG
    Phys Rev Lett; 2015 Oct; 115(17):176801. PubMed ID: 26551134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys.
    Chen Y; Xi J; Dumcenco DO; Liu Z; Suenaga K; Wang D; Shuai Z; Huang YS; Xie L
    ACS Nano; 2013 May; 7(5):4610-6. PubMed ID: 23600688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-Triplet Excitonic Insulator: The Case of Semihydrogenated Graphene.
    Jiang Z; Lou W; Liu Y; Li Y; Song H; Chang K; Duan W; Zhang S
    Phys Rev Lett; 2020 Apr; 124(16):166401. PubMed ID: 32383949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.
    Poellmann C; Steinleitner P; Leierseder U; Nagler P; Plechinger G; Porer M; Bratschitsch R; Schüller C; Korn T; Huber R
    Nat Mater; 2015 Sep; 14(9):889-93. PubMed ID: 26168345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinctive Signatures of the Spin- and Momentum-Forbidden Dark Exciton States in the Photoluminescence of Strained WSe
    Peng GH; Lo PY; Li WH; Huang YC; Chen YH; Lee CH; Yang CK; Cheng SJ
    Nano Lett; 2019 Apr; 19(4):2299-2312. PubMed ID: 30860847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitonic Complexes and Emerging Interlayer Electron-Phonon Coupling in BN Encapsulated Monolayer Semiconductor Alloy: WS
    Meng Y; Wang T; Li Z; Qin Y; Lian Z; Chen Y; Lucking MC; Beach K; Taniguchi T; Watanabe K; Tongay S; Song F; Terrones H; Shi SF
    Nano Lett; 2019 Jan; 19(1):299-307. PubMed ID: 30556398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitonic Valley Effects in Monolayer WS
    Plechinger G; Nagler P; Arora A; Granados Del Águila A; Ballottin MV; Frank T; Steinleitner P; Gmitra M; Fabian J; Christianen PC; Bratschitsch R; Schüller C; Korn T
    Nano Lett; 2016 Dec; 16(12):7899-7904. PubMed ID: 27960453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical screening in monolayer transition-metal dichalcogenides and its manifestations in the exciton spectrum.
    Scharf B; Van Tuan D; Žutić I; Dery H
    J Phys Condens Matter; 2019 May; 31(20):203001. PubMed ID: 30763925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.