These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 33095635)
1. Observation of Intensity Squeezing in Resonance Fluorescence from a Solid-State Device. Wang H; Qin J; Chen S; Chen MC; You X; Ding X; Huo YH; Yu Y; Schneider C; Höfling S; Scully M; Lu CY; Pan JW Phys Rev Lett; 2020 Oct; 125(15):153601. PubMed ID: 33095635 [TBL] [Abstract][Full Text] [Related]
2. Quadrature squeezed photons from a two-level system. Schulte CH; Hansom J; Jones AE; Matthiesen C; Le Gall C; Atatüre M Nature; 2015 Sep; 525(7568):222-5. PubMed ID: 26322581 [TBL] [Abstract][Full Text] [Related]
3. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Unsleber S; He YM; Gerhardt S; Maier S; Lu CY; Pan JW; Gregersen N; Kamp M; Schneider C; Höfling S Opt Express; 2016 Apr; 24(8):8539-46. PubMed ID: 27137291 [TBL] [Abstract][Full Text] [Related]
4. Deterministic generation of bright single resonance fluorescence photons from a Purcell-enhanced quantum dot-micropillar system. Unsleber S; Schneider C; Maier S; He YM; Gerhardt S; Lu CY; Pan JW; Kamp M; Höfling S Opt Express; 2015 Dec; 23(26):32977-85. PubMed ID: 26831965 [TBL] [Abstract][Full Text] [Related]
5. Dependence of measured audio-band squeezing level on local oscillator intensity noise. Yang W; Jin X; Yu X; Zheng Y; Peng K Opt Express; 2017 Oct; 25(20):24262-24271. PubMed ID: 29041371 [TBL] [Abstract][Full Text] [Related]
6. Long-distance distribution of the telecom band intensity difference squeezing generated in a fiber optical parametric amplifier. Liu Y; Huo N; Li J; Li X Opt Lett; 2018 Nov; 43(22):5559-5562. PubMed ID: 30439895 [TBL] [Abstract][Full Text] [Related]
7. Intense Squeezed Light from Lasers with Sharply Nonlinear Gain at Optical Frequencies. Nguyen L; Sloan J; Rivera N; Soljačić M Phys Rev Lett; 2023 Oct; 131(17):173801. PubMed ID: 37955495 [TBL] [Abstract][Full Text] [Related]
8. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Wei YJ; He YM; Chen MC; Hu YN; He Y; Wu D; Schneider C; Kamp M; Höfling S; Lu CY; Pan JW Nano Lett; 2014 Nov; 14(11):6515-9. PubMed ID: 25357153 [TBL] [Abstract][Full Text] [Related]
9. Photon Noise Suppression by a Built-in Feedback Loop. Al-Ashouri A; Kurzmann A; Merkel B; Ludwig A; Wieck AD; Lorke A; Geller M Nano Lett; 2019 Jan; 19(1):135-141. PubMed ID: 30560670 [TBL] [Abstract][Full Text] [Related]
10. Perfect intrinsic squeezing at the superradiant phase transition critical point. Hayashida K; Makihara T; Marquez Peraca N; Fallas Padilla D; Pu H; Kono J; Bamba M Sci Rep; 2023 Feb; 13(1):2526. PubMed ID: 36781905 [TBL] [Abstract][Full Text] [Related]
11. Cavity-enhanced coherent light scattering from a quantum dot. Bennett AJ; Lee JP; Ellis DJ; Meany T; Murray E; Floether FF; Griffths JP; Farrer I; Ritchie DA; Shields AJ Sci Adv; 2016 Apr; 2(4):e1501256. PubMed ID: 27152337 [TBL] [Abstract][Full Text] [Related]
12. Creating large Fock states and massively squeezed states in optics using systems with nonlinear bound states in the continuum. Rivera N; Sloan J; Salamin Y; Joannopoulos JD; Soljačić M Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2219208120. PubMed ID: 36827265 [TBL] [Abstract][Full Text] [Related]
13. Quantum Interferometer Combining Squeezing and Parametric Amplification. Zuo X; Yan Z; Feng Y; Ma J; Jia X; Xie C; Peng K Phys Rev Lett; 2020 May; 124(17):173602. PubMed ID: 32412253 [TBL] [Abstract][Full Text] [Related]
14. Vibrational enhancement of quadrature squeezing and phase sensitivity in resonance fluorescence. Iles-Smith J; Nazir A; McCutcheon DPS Nat Commun; 2019 Jul; 10(1):3034. PubMed ID: 31292447 [TBL] [Abstract][Full Text] [Related]
15. Scalable spin squeezing in a dipolar Rydberg atom array. Bornet G; Emperauger G; Chen C; Ye B; Block M; Bintz M; Boyd JA; Barredo D; Comparin T; Mezzacapo F; Roscilde T; Lahaye T; Yao NY; Browaeys A Nature; 2023 Sep; 621(7980):728-733. PubMed ID: 37648859 [TBL] [Abstract][Full Text] [Related]
16. Critical petermann K factor for intensity noise squeezing. van Der Lee AM ; van Druten NJ ; van Exter MP ; Woerdman JP; Poizat JP; Grangier P Phys Rev Lett; 2000 Nov; 85(22):4711-4. PubMed ID: 11082633 [TBL] [Abstract][Full Text] [Related]
17. Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor. Ma R; Liu W; Qin Z; Su X; Jia X; Zhang J; Gao J Opt Lett; 2018 Mar; 43(6):1243-1246. PubMed ID: 29543262 [TBL] [Abstract][Full Text] [Related]
18. Beam Focusing and Reduction of Quantum Uncertainty in Width at the Few-Photon Level via Multi-Spatial-Mode Squeezing. Zhang L; Agarwal GS; Scully MO Phys Rev Lett; 2019 Mar; 122(8):083601. PubMed ID: 30932561 [TBL] [Abstract][Full Text] [Related]
19. Observation of squeezed light from one atom excited with two photons. Ourjoumtsev A; Kubanek A; Koch M; Sames C; Pinkse PW; Rempe G; Murr K Nature; 2011 Jun; 474(7353):623-6. PubMed ID: 21720367 [TBL] [Abstract][Full Text] [Related]
20. Toward a compact fibered squeezing parametric source. Brieussel A; Ott K; Joos M; Treps N; Fabre C Opt Lett; 2018 Mar; 43(6):1267-1270. PubMed ID: 29543268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]