These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 33095664)
41. A transcriptomic-based analysis predicts the neuroendocrine disrupting effect on adult male and female zebrafish (Danio rerio) following long-term exposure to tetrabromobisphenol A bis(2-hydroxyethyl) ether. Okeke ES; Feng W; Mao G; Chen Y; Qian X; Luo M; Xu H; Qiu X; Wu X; Yang L Comp Biochem Physiol C Toxicol Pharmacol; 2023 Feb; 264():109527. PubMed ID: 36442598 [TBL] [Abstract][Full Text] [Related]
42. TBBPA stimulated cell migration of endometrial cancer via the contribution of NOX-generated ROS in lieu of energy metabolism. Su H; Guan G; Ahmed RZ; Lyu L; Li Z; Jin X J Hazard Mater; 2020 Dec; 400():123204. PubMed ID: 32569978 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of the toxic effects of brominated compounds (BDE-47, 99, 209, TBBPA) and bisphenol A (BPA) using a zebrafish liver cell line, ZFL. Yang J; Chan KM Aquat Toxicol; 2015 Feb; 159():138-47. PubMed ID: 25544063 [TBL] [Abstract][Full Text] [Related]
44. Binding and activity of polybrominated diphenyl ether sulfates to thyroid hormone transport proteins and nuclear receptors. Qin WP; Li CH; Guo LH; Ren XM; Zhang JQ Environ Sci Process Impacts; 2019 Jun; 21(6):950-956. PubMed ID: 31143904 [TBL] [Abstract][Full Text] [Related]
45. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Kitamura S; Kato T; Iida M; Jinno N; Suzuki T; Ohta S; Fujimoto N; Hanada H; Kashiwagi K; Kashiwagi A Life Sci; 2005 Feb; 76(14):1589-601. PubMed ID: 15680168 [TBL] [Abstract][Full Text] [Related]
46. Identification of Unknown Brominated Bisphenol S Congeners in Contaminated Soils as the Transformation Products of Tetrabromobisphenol S Derivatives. Liu A; Shi J; Shen Z; Lin Y; Qu G; Zhao Z; Jiang G Environ Sci Technol; 2018 Sep; 52(18):10480-10489. PubMed ID: 30095896 [TBL] [Abstract][Full Text] [Related]
47. Identification of tetrabromobisphenol A diallyl ether as an emerging neurotoxicant in environmental samples by bioassay-directed fractionation and HPLC-APCI-MS/MS. Qu G; Shi J; Wang T; Fu J; Li Z; Wang P; Ruan T; Jiang G Environ Sci Technol; 2011 Jun; 45(11):5009-16. PubMed ID: 21539307 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of tetrabromobisphenol A effects on human glucocorticoid and androgen receptors: A comparison of results from human- with yeast-based in vitro assays. Beck KR; Sommer TJ; Schuster D; Odermatt A Toxicology; 2016 Aug; 370():70-77. PubMed ID: 27693315 [TBL] [Abstract][Full Text] [Related]
49. Biotransformation of tetrabromobisphenol A dimethyl ether back to tetrabromobisphenol A in whole pumpkin plants. Hou X; Yu M; Liu A; Li Y; Ruan T; Liu J; Schnoor JL; Jiang G Environ Pollut; 2018 Oct; 241():331-338. PubMed ID: 29843015 [TBL] [Abstract][Full Text] [Related]
50. Toxicity of Tetrabromobisphenol A and Its Derivative in the Mouse Liver Following Oral Exposure at Environmentally Relevant Levels. Yao L; Wang Y; Shi J; Liu Y; Guo H; Yang X; Liu Y; Ma J; Li D; Wang Z; Li Z; Luo Q; Fu J; Zhang Q; Qu G; Wang Y; Jiang G Environ Sci Technol; 2021 Jun; 55(12):8191-8202. PubMed ID: 34086441 [TBL] [Abstract][Full Text] [Related]
51. Optimized methods for measuring competitive binding of chemical substances to thyroid hormone distributor proteins transthyretin and thyroxine binding globulin. Shen Y; Bovee TFH; Molenaar D; Weide Y; Nolles A; Braucic Mitrovic C; van Leeuwen SPJ; Louisse J; Hamers T Arch Toxicol; 2024 Nov; 98(11):3797-3809. PubMed ID: 39167138 [TBL] [Abstract][Full Text] [Related]
52. Disruption of thyroid hormone sulfotransferase activity by brominated flame retardant chemicals in the human choriocarcinoma placenta cell line, BeWo. Leonetti CP; Butt CM; Stapleton HM Chemosphere; 2018 Apr; 197():81-88. PubMed ID: 29331935 [TBL] [Abstract][Full Text] [Related]
53. Developmental toxicity assessments for TBBPA and its commonly used analogs with a human embryonic stem cell liver differentiation model. Li S; Yang R; Yin N; Zhao M; Zhang S; Faiola F Chemosphere; 2023 Jan; 310():136924. PubMed ID: 36272632 [TBL] [Abstract][Full Text] [Related]
54. Transcriptomic sequencing reveals the potential molecular mechanism by which Tetrabromobisphenol A bis (2-hydroxyethyl ether) exposure exerts developmental neurotoxicity in developing zebrafish (Danio rerio). Okeke ES; Qian X; Che J; Mao G; Chen Y; Xu H; Ding Y; Zeng Z; Wu X; Feng W Comp Biochem Physiol C Toxicol Pharmacol; 2022 Dec; 262():109467. PubMed ID: 36113845 [TBL] [Abstract][Full Text] [Related]
55. Anti-thyroid hormone activity of bisphenol A, tetrabromobisphenol A and tetrachlorobisphenol A in an improved reporter gene assay. Sun H; Shen OX; Wang XR; Zhou L; Zhen SQ; Chen XD Toxicol In Vitro; 2009 Aug; 23(5):950-4. PubMed ID: 19457453 [TBL] [Abstract][Full Text] [Related]
56. The Role of Ca Zieminska E; Lenart J; Diamandakis D; Lazarewicz JW Neurochem Res; 2017 Mar; 42(3):777-787. PubMed ID: 27718046 [TBL] [Abstract][Full Text] [Related]
57. Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling. Koike E; Yanagisawa R; Takano H Toxicol In Vitro; 2016 Apr; 32():212-9. PubMed ID: 26718265 [TBL] [Abstract][Full Text] [Related]
58. Neurodevelopmental toxicity and molecular mechanism of environmental concentration of tetrabromobisphenol A bis (2- hydroxyethyl) ether exposure to sexually developing male SD rats. Luo M; Song C; Zuo J; Feng W; Wu C; Geng X; Okeke ES; Mao G; Chen Y; Zhao T; Wu X Chemosphere; 2024 Apr; 353():141378. PubMed ID: 38442777 [TBL] [Abstract][Full Text] [Related]
59. Intranasal administration of tetrabromobisphenol A bis(2-hydroxyethyl ether) induces neurobehavioral changes in neonatal Sprague Dawley rats. Liu QS; Liu N; Sun Z; Zhou Q; Jiang G J Environ Sci (China); 2018 Jan; 63():76-86. PubMed ID: 29406119 [TBL] [Abstract][Full Text] [Related]
60. Recombinant transthyretin purification and competitive binding with organohalogen compounds in two gull species (Larus argentatus and Larus hyperboreus). Ucán-Marín F; Arukwe A; Mortensen A; Gabrielsen GW; Fox GA; Letcher RJ Toxicol Sci; 2009 Feb; 107(2):440-50. PubMed ID: 19033396 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]