These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33096018)

  • 21. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations.
    Rems L; Tarek M; Casciola M; Miklavčič D
    Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane Electroporation and Electropermeabilization: Mechanisms and Models.
    Kotnik T; Rems L; Tarek M; Miklavčič D
    Annu Rev Biophys; 2019 May; 48():63-91. PubMed ID: 30786231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular-level characterization of lipid membrane electroporation using linearly rising current.
    Kramar P; Delemotte L; Maček Lebar A; Kotulska M; Tarek M; Miklavčič D
    J Membr Biol; 2012 Oct; 245(10):651-9. PubMed ID: 22886207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electroporation of DC-3F cells is a dual process.
    Wegner LH; Frey W; Silve A
    Biophys J; 2015 Apr; 108(7):1660-1671. PubMed ID: 25863058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses.
    Sridhara V; Joshi RP
    Biochim Biophys Acta; 2014 Mar; 1838(3):902-9. PubMed ID: 24239610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers.
    Fernández ML; Marshall G; Sagués F; Reigada R
    J Phys Chem B; 2010 May; 114(20):6855-65. PubMed ID: 20429602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses.
    Joshi RP; Hu Q; Aly R; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011913. PubMed ID: 11461294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations.
    Böckmann RA; de Groot BL; Kakorin S; Neumann E; Grubmüller H
    Biophys J; 2008 Aug; 95(4):1837-50. PubMed ID: 18469089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation.
    Karal MAS; Islam MK; Mahbub ZB
    Eur Biophys J; 2020 Jan; 49(1):59-69. PubMed ID: 31796980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers--in cells and in silico.
    Vernier PT; Ziegler MJ; Sun Y; Gundersen MA; Tieleman DP
    Phys Biol; 2006 Nov; 3(4):233-47. PubMed ID: 17200599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of electroporation sites in the complex lipid organization of the plasma membrane.
    Rems L; Tang X; Zhao F; Pérez-Conesa S; Testa I; Delemotte L
    Elife; 2022 Feb; 11():. PubMed ID: 35195069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Translocation of the nonlabeled antimicrobial peptide PGLa across lipid bilayers and its entry into vesicle lumens without pore formation.
    Ali MH; Shuma ML; Dohra H; Yamazaki M
    Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183680. PubMed ID: 34153295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time imaging of individual electropores proves their longevity in cells.
    Silkunas M; Silkuniene G; Pakhomov AG
    Biochem Biophys Res Commun; 2024 Feb; 695():149408. PubMed ID: 38157631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane Tension in Negatively Charged Lipid Bilayers in a Buffer under Osmotic Pressure.
    Saha SK; Alam Shibly SU; Yamazaki M
    J Phys Chem B; 2020 Jul; 124(27):5588-5599. PubMed ID: 32543195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications.
    Perrier DL; Rems L; Boukany PE
    Adv Colloid Interface Sci; 2017 Nov; 249():248-271. PubMed ID: 28499600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.
    Hu Q; Viswanadham S; Joshi RP; Schoenbach KH; Beebe SJ; Blackmore PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031914. PubMed ID: 15903466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pulsed Electric Fields Can Create Pores in the Voltage Sensors of Voltage-Gated Ion Channels.
    Rems L; Kasimova MA; Testa I; Delemotte L
    Biophys J; 2020 Jul; 119(1):190-205. PubMed ID: 32559411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Simulations Reveal the Free Energy Landscape and Transition State of Membrane Electroporation.
    Kasparyan G; Hub JS
    Phys Rev Lett; 2024 Apr; 132(14):148401. PubMed ID: 38640376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of dimethyl sulfoxide on lipid membrane electroporation.
    Fernández ML; Reigada R
    J Phys Chem B; 2014 Aug; 118(31):9306-12. PubMed ID: 25035931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.